Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620157

RESUMO

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Assuntos
Sono REM , Sono , Humanos , Impedância Elétrica , Sono/fisiologia , Sono REM/fisiologia , Encéfalo/fisiologia , Vigília/fisiologia , Hipocampo
2.
Neurobiol Dis ; 199: 106565, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880431

RESUMO

Subthalamic deep brain stimulation (DBS) robustly generates high-frequency oscillations known as evoked resonant neural activity (ERNA). Recently the importance of ERNA has been demonstrated through its ability to predict the optimal DBS contact in the subthalamic nucleus in patients with Parkinson's disease. However, the underlying mechanisms of ERNA are not well understood, and previous modelling efforts have not managed to reproduce the wealth of published data describing the dynamics of ERNA. Here, we aim to present a minimal model capable of reproducing the characteristics of the slow ERNA dynamics published to date. We make biophysically-motivated modifications to the Kuramoto model and fit its parameters to the slow dynamics of ERNA obtained from data. Our results demonstrate that it is possible to reproduce the slow dynamics of ERNA (over hundreds of seconds) with a single neuronal population, and, crucially, with vesicle depletion as one of the key mechanisms behind the ERNA frequency decay in our model. We further validate the proposed model against experimental data from Parkinson's disease patients, where it captures the variations in ERNA frequency and amplitude in response to variable stimulation frequency, amplitude, and to stimulation pulse bursting. We provide a series of predictions from the model that could be the subject of future studies for further validation.

3.
PLoS Comput Biol ; 19(12): e1011674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091368

RESUMO

Stimulation optimization has garnered considerable interest in recent years in order to efficiently parametrize neuromodulation-based therapies. To date, efforts focused on automatically identifying settings from parameter spaces that do not change over time. A limitation of these approaches, however, is that they lack consideration for time dependent factors that may influence therapy outcomes. Disease progression and biological rhythmicity are two sources of variation that may influence optimal stimulation settings over time. To account for this, we present a novel time-varying Bayesian optimization (TV-BayesOpt) for tracking the optimum parameter set for neuromodulation therapy. We evaluate the performance of TV-BayesOpt for tracking gradual and periodic slow variations over time. The algorithm was investigated within the context of a computational model of phase-locked deep brain stimulation for treating oscillopathies representative of common movement disorders such as Parkinson's disease and Essential Tremor. When the optimal stimulation settings changed due to gradual and periodic sources, TV-BayesOpt outperformed standard time-invariant techniques and was able to identify the appropriate stimulation setting. Through incorporation of both a gradual "forgetting" and periodic covariance functions, the algorithm maintained robust performance when a priori knowledge differed from observed variations. This algorithm presents a broad framework that can be leveraged for the treatment of a range of neurological and psychiatric conditions and can be used to track variations in optimal stimulation settings such as amplitude, pulse-width, frequency and phase for invasive and non-invasive neuromodulation strategies.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Teorema de Bayes , Doença de Parkinson/terapia , Tremor Essencial/terapia , Algoritmos
4.
Brain ; 146(12): 5015-5030, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433037

RESUMO

Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Tremor/terapia , Movimento/fisiologia , Núcleo Subtalâmico/fisiologia
5.
Neurobiol Dis ; 178: 106019, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706929

RESUMO

Evoked resonant neural activity (ERNA) is induced by subthalamic deep brain stimulation (DBS) and was recently suggested as a marker of lead placement and contact selection in Parkinson's disease. Yet, its underlying mechanisms and how it is modulated by stimulation parameters are unclear. Here, we recorded local field potentials from 27 Parkinson's disease patients, while leads were externalised to scrutinise the ERNA. First, we show that ERNA in the time series waveform and spectrogram likely represent the same activity, which was contested before. Second, our results show that the ERNA has fast and slow dynamics during stimulation, consistent with the synaptic failure hypothesis. Third, we show that ERNA parameters are modulated by different DBS frequencies, intensities, medication states and stimulation modes (continuous DBS vs. adaptive DBS). These results suggest the ERNA might prove useful as a predictor of the best DBS frequency and lowest effective intensity in addition to contact selection. Changes with levodopa and DBS mode suggest that the ERNA may indicate the state of the cortico-basal ganglia circuit making it a putative biomarker to track clinical state in adaptive DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Gânglios da Base , Levodopa/farmacologia , Potenciais Evocados/fisiologia
6.
Epilepsia ; 64 Suppl 3: S72-S84, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36861368

RESUMO

Collaborative efforts between basic scientists, engineers, and clinicians are enabling translational epileptology. In this article, we summarize the recent advances presented at the International Conference for Technology and Analysis of Seizures (ICTALS 2022): (1) novel developments of structural magnetic resonance imaging; (2) latest electroencephalography signal-processing applications; (3) big data for the development of clinical tools; (4) the emerging field of hyperdimensional computing; (5) the new generation of artificial intelligence (AI)-enabled neuroprostheses; and (6) the use of collaborative platforms to facilitate epilepsy research translation. We highlight the promise of AI reported in recent investigations and the need for multicenter data-sharing initiatives.


Assuntos
Inteligência Artificial , Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/terapia , Convulsões , Pesquisa , Eletroencefalografia
7.
Brain ; 145(10): 3347-3362, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35771657

RESUMO

Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.


Assuntos
Estimulação Encefálica Profunda , Epilepsias Parciais , Epilepsia , Núcleo Subtalâmico , Adulto , Criança , Humanos , Anticonvulsivantes , Epilepsia/terapia , Tálamo
8.
Mov Disord ; 36(7): 1526-1542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826171

RESUMO

Sleep disturbances are among the most common nonmotor complications of Parkinson's disease (PD), can present in prodromal stages, and progress with advancing disease. In addition to being a symptom of neurodegeneration, sleep disturbances may also contribute to disease progression. Currently, limited options exist to modulate sleep disturbances in PD. Studying the neurophysiological changes that affect sleep in PD at the cortical and subcortical level may yield new insights into mechanisms for reversal of sleep disruption. In this article, we review cortical and subcortical recording studies of sleep in PD with a particular focus on dissecting reported electrophysiological changes. These studies show that slow-wave sleep and rapid eye movement sleep are both notably disrupted in PD. We further explore the impact of these electrophysiological changes and discuss the potential for targeting sleep via stimulation therapy to modify PD-related motor and nonmotor symptoms. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Transtornos do Sono-Vigília , Humanos , Doença de Parkinson/complicações , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/etiologia , Sono , Transtornos do Sono-Vigília/etiologia , Sono REM
9.
N Engl J Med ; 375(21): 2060-2066, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27959736

RESUMO

Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).


Assuntos
Esclerose Lateral Amiotrófica/reabilitação , Afonia/reabilitação , Interfaces Cérebro-Computador , Auxiliares de Comunicação para Pessoas com Deficiência , Quadriplegia/reabilitação , Esclerose Lateral Amiotrófica/complicações , Afonia/etiologia , Eletrodos Implantados , Feminino , Humanos , Pessoa de Meia-Idade , Córtex Motor , Reabilitação Neurológica/instrumentação , Quadriplegia/etiologia
10.
J Neuroeng Rehabil ; 16(1): 156, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823804

RESUMO

BACKGROUND: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. METHODS: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. RESULTS: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. CONCLUSIONS: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5-500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments.


Assuntos
Eletrodiagnóstico/instrumentação , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Animais , Estimulação Encefálica Profunda , Desenho de Equipamento , Humanos , Processamento de Sinais Assistido por Computador
11.
Brain ; 140(1): 132-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007997

RESUMO

SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.


Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/complicações , Tremor Essencial/terapia , Tálamo , Tremor/terapia , Acelerometria , Tremor Essencial/fisiopatologia , Humanos , Tremor/etiologia , Tremor/fisiopatologia
12.
Neuromodulation ; 18(2): 85-8; discussion 88-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25171762

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an effective therapy for the treatment of a number of movement and neuropsychiatric disorders. The effectiveness of DBS is dependent on the density and location of stimulation in a given brain area. Adjustments are made to optimize clinical benefits and minimize side effects. Until recently, clinicians would adjust DBS settings using a voltage mode, where the delivered voltage remained constant. More recently, a constant-current mode has become available where the programmer sets the current and the stimulator automatically adjusts the voltage as impedance changes. METHODS: We held an expert consensus meeting to evaluate the current state of the literature and field on constant-current mode versus voltage mode in clinical brain-related applications. RESULTS/CONCLUSIONS: There has been little reporting of the use of constant-current DBS devices in movement and neuropsychiatric disorders. However, as impedance varies considerably between patients and over time, it makes sense that all new devices will likely use constant current.


Assuntos
Fenômenos Biofísicos/fisiologia , Encéfalo/fisiologia , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Encefalopatias/terapia , Impedância Elétrica , Humanos , Fatores de Tempo
13.
Neuromodulation ; 17 Suppl 1: 48-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974775

RESUMO

OBJECTIVES: To provide a general control system framework for neuromodulation, its practical challenges, and historical underpinnings in cardiac rhythm devices, and to illustrate the potential of closed-loop techniques in neuromodulation with a case study using an adaptive neural stimulation system that integrates sensing, actuation, and state estimation for the treatment of chronic pain through spinal cord stimulation. MATERIALS AND METHODS: The current state of neuromodulation can be viewed in a classical dynamic control framework: the nervous system is the classical "plant," the neural stimulator is the actuator, tools to collect clinical data are the sensors, and the physician's judgment is the state estimator and mechanism for closing the therapy feedback loop. This framework highlights the opportunities available to advance neuromodulation. RESULTS: Technology has the capability to address key factors limiting the performance of current systems: observability, the ability of the device to monitor the state of the nervous system from sensor-based measurements in real time; and controllability, the ability of the device to drive the nervous system to a desired physiological state using suitable algorithms and actuation. CONCLUSIONS: Technological advances in neuromodulation using such a control framework have the potential to improve neurologic therapies. Future opportunities for extending the role of these systems are briefly discussed.


Assuntos
Modelos Neurológicos , Doenças do Sistema Nervoso/terapia , Neurotransmissores , Postura/fisiologia , Processamento de Sinais Assistido por Computador , Estimulação Elétrica/métodos , Humanos , Sistema Nervoso
14.
Nat Commun ; 15(1): 1793, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413587

RESUMO

Sleep disturbance is a prevalent and disabling comorbidity in Parkinson's disease (PD). We performed multi-night (n = 57) at-home intracranial recordings from electrocorticography and subcortical electrodes using sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography in four PD participants and one with cervical dystonia (clinical trial: NCT03582891). Cortico-basal activity in delta increased and in beta decreased during NREM (N2 + N3) versus wakefulness in PD. DBS caused further elevation in cortical delta and decrease in alpha and low-beta compared to DBS OFF state. Our primary outcome demonstrated an inverse interaction between subcortical beta and cortical slow-wave during NREM. Our secondary outcome revealed subcortical beta increases prior to spontaneous awakenings in PD. We classified NREM vs. wakefulness with high accuracy in both traditional (30 s: 92.6 ± 1.7%) and rapid (5 s: 88.3 ± 2.1%) data epochs of intracranial signals. Our findings elucidate sleep neurophysiology and impacts of DBS on sleep in PD informing adaptive DBS for sleep dysfunction.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Sono/fisiologia , Polissonografia , Eletrocorticografia
15.
JAMA Netw Open ; 7(4): e248654, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687486

RESUMO

Importance: Establishing a formal definition for neurological device abandonment has the potential to reduce or to prevent the occurrence of this abandonment. Objective: To perform a systematic review of the literature and develop an expert consensus definition for neurological device abandonment. Evidence Review: After a Royal Society Summit on Neural Interfaces (September 13-14, 2023), a systematic English language review using PubMed was undertaken to investigate extant definitions of neurological device abandonment. Articles were reviewed for relevance to neurological device abandonment in the setting of deep brain, vagal nerve, and spinal cord stimulation. This review was followed by the convening of an expert consensus group of physicians, scientists, ethicists, and stakeholders. The group summarized findings, added subject matter experience, and applied relevant ethics concepts to propose a current operational definition of neurological device abandonment. Data collection, study, and consensus development were done between September 13, 2023, and February 1, 2024. Findings: The PubMed search revealed 734 total articles, and after review, 7 articles were found to address neurological device abandonment. The expert consensus group addressed findings as germane to neurological device abandonment and added personal experience and additional relevant peer-reviewed articles, addressed stakeholders' respective responsibilities, and operationally defined abandonment in the context of implantable neurotechnological devices. The group further addressed whether clinical trial failure or shelving of devices would constitute or be associated with abandonment as defined. Referential to these domains and dimensions, the group proposed a standardized definition for abandonment of active implantable neurotechnological devices. Conclusions and Relevance: This study's consensus statement suggests that the definition for neurological device abandonment should entail failure to provide fundamental aspects of patient consent; fulfill reasonable responsibility for medical, technical, or financial support prior to the end of the device's labeled lifetime; and address any or all immediate needs that may result in safety concerns or device ineffectiveness and that the definition of abandonment associated with the failure of a research trial should be contingent on specific circumstances.


Assuntos
Consenso , Humanos , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/ética
16.
Transl Psychiatry ; 14(1): 103, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378677

RESUMO

Deep brain stimulation (DBS) of the subcallosal cingulate cortex (SCC) is an experimental therapy for treatment-resistant depression (TRD). Chronic SCC DBS leads to long-term changes in the electrophysiological dynamics measured from local field potential (LFP) during wakefulness, but it is unclear how it impacts sleep-related brain activity. This is a crucial gap in knowledge, given the link between depression and sleep disturbances, and an emerging interest in the interaction between DBS, sleep, and circadian rhythms. We therefore sought to characterize changes in electrophysiological markers of sleep associated with DBS treatment for depression. We analyzed key electrophysiological signatures of sleep-slow-wave activity (SWA, 0.5-4.5 Hz) and sleep spindles-in LFPs recorded from the SCC of 9 patients who responded to DBS for TRD. This allowed us to compare the electrophysiological changes before and after 24 weeks of therapeutically effective SCC DBS. SWA power was highly correlated between hemispheres, consistent with a global sleep state. Furthermore, SWA occurred earlier in the night after chronic DBS and had a more prominent peak. While we found no evidence for changes to slow-wave power or stability, we found an increase in the density of sleep spindles. Our results represent a first-of-its-kind report on long-term electrophysiological markers of sleep recorded from the SCC in patients with TRD, and provides evidence of earlier NREM sleep and increased sleep spindle activity following clinically effective DBS treatment. Future work is needed to establish the causal relationship between long-term DBS and the neural mechanisms underlying sleep.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Humanos , Giro do Cíngulo/fisiologia , Depressão , Estimulação Encefálica Profunda/métodos , Sono , Transtorno Depressivo Resistente a Tratamento/terapia
17.
J Neural Eng ; 21(2)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38484397

RESUMO

Objective.This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus, and posterior hippocampus over an extended period.Approach.Impedance was periodically sampled every 5-15 min over several months in five subjects with drug-resistant epilepsy using an investigational neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24 h impedance cycle throughout the multi-month recording.Main results.Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 d to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24 h impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures.Significance.Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.


Assuntos
Estimulação Encefálica Profunda , Corpos Estranhos , Humanos , Impedância Elétrica , Encéfalo/fisiologia , Eletrodos Implantados , Estimulação Encefálica Profunda/métodos
18.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343858

RESUMO

Objective: This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus (AMG-HPC), and posterior hippocampus (post-HPC) over an extended period. Approach: Impedance was periodically sampled every 5-15 minutes over several months in five subjects with drug-resistant epilepsy using an experimental neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24-hour impedance cycle throughout the multi-month recording. Main results: Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 days to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24-hour impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures. Significance: Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.

19.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38370724

RESUMO

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

20.
Stereotact Funct Neurosurg ; 91(4): 220-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23548876

RESUMO

BACKGROUND/AIMS: In conjunction with therapeutic stimulation, next-generation deep brain stimulation (DBS) devices may offer the ability to record and analyze neural signals, providing for unprecedented insight into DBS effects on neural networks. This work was conducted to evaluate an implantable, clinical-grade system that permits concurrent stimulation and recording using a large animal (ovine) model recently developed to study DBS for epilepsy. METHODS: Following anesthesia and 1.5-tesla MRI acquisition, unilateral anterior thalamic and hippocampal DBS leads were implanted (n = 3) using a frameless stereotactic system. Chronic, awake recordings of evoked potentials (EPs) and local field potentials were collected with the implanted device and analyzed off-line. RESULTS: Hippocampal EPs were stable over long-term (>1 year) recording and consistent in morphology and latency with prior acute results. Thalamic and hippocampal DBS produced both excitatory and inhibitory network effects that were stimulation site and parameter dependent. Free roaming recordings illustrated periods of highly correlated activity between these two structures within the circuit of Papez. CONCLUSIONS: These results provide further insight into mechanisms of DBS therapy for epilepsy and an encouraging demonstration of the capabilities of this new technology, which in the future, may afford unique opportunities to study human brain function and neuromodulation mechanism of action.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Potenciais Evocados/fisiologia , Monitorização Intraoperatória/métodos , Rede Nervosa/fisiologia , Tálamo/fisiologia , Animais , Estimulação Encefálica Profunda/instrumentação , Hipocampo/fisiologia , Monitorização Intraoperatória/instrumentação , Ovinos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa