RESUMO
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.
Assuntos
Potenciais de Ação/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Conjuntos de Dados como Assunto , Eletrofisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologiaRESUMO
Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.
Assuntos
Eletrodos , Neurônios/fisiologia , Silício/metabolismo , Animais , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Masculino , Camundongos , Movimento/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Semicondutores , Vigília/fisiologiaRESUMO
Different neuron types serve distinct roles in neural processing. Extracellular electrical recordings are extensively used to study brain function but are typically blind to cell identity. Morphoelectrical properties of neurons measured on spatially dense electrode arrays have the potential to distinguish neuron types. We used high-density silicon probes to record from cortical and subcortical regions of the mouse brain. Extracellular waveforms of each neuron were detected across many channels and showed distinct spatiotemporal profiles among brain regions. Classification of neurons by brain region was improved with multichannel compared with single-channel waveforms. In visual cortex, unsupervised clustering identified the canonical regular-spiking (RS) and fast-spiking (FS) classes but also indicated a subclass of RS units with unidirectional backpropagating action potentials (BAPs). Moreover, BAPs were observed in many hippocampal RS cells. Overall, waveform analysis of spikes from high-density probes aids neuron identification and can reveal dendritic backpropagation. NEW & NOTEWORTHY It is challenging to identify neuron types with extracellular electrophysiology in vivo. We show that spatiotemporal action potentials measured on high-density electrode arrays can capture cell type-specific morphoelectrical properties, allowing classification of neurons across brain structures and within the cortex. Moreover, backpropagating action potentials are reliably detected in vivo from subpopulations of cortical and hippocampal neurons. Together, these results enhance the utility of dense extracellular electrophysiology for cell-type interrogation of brain network function.
Assuntos
Potenciais de Ação , Dendritos/fisiologia , Espaço Extracelular/fisiologia , Hipocampo/fisiologia , Córtex Visual/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dendritos/classificação , Eletrofisiologia/métodos , Hipocampo/citologia , Camundongos , Optogenética/métodos , Córtex Visual/citologiaRESUMO
In both dichromats and trichromats, cone opsin signals are maintained independently in cones and combined at the bipolar and retinal ganglion cell level, creating parallel color opponent pathways to the central visual system. Like other dichromats, the mouse retina expresses a short-wavelength (S) and a medium-wavelength (M) opsin, with the S-opsin shifted to peak sensitivity in the ultraviolet (UV) range. Unlike in primates, nonuniform opsin expression across the retina and coexpression in single cones creates a mostly mixed chromatic signal. Here, we describe the visuotopic and chromatic organization of spiking responses in the dorsal lateral geniculate and of the local field potentials in their recipient zone in primary visual cortex (V1). We used an immersive visual stimulus dome that allowed us to present spatiotemporally modulated UV and green luminance in any region of the visual field of an awake, head-fixed mouse. Consistent with retinal expression of opsins, we observed graded UV-to-green dominated responses from the upper to lower visual fields, with a smaller difference across azimuth. In addition, we identified a subpopulation of cells (<10%) that exhibited spectrally opponent responses along the S-M axis. Luminance signals of each wavelength and color signals project to the middle layers of V1. SIGNIFICANCE STATEMENT: In natural environments, color information is useful for guiding behavior. How small terrestrial mammals such as mice use graded expression of cone opsins to extract visual information from their environments is not clear, even as the use of mice for studying visually guided behavior grows. In this study, we examined the color signals that the retina sends to the visual cortex via the lateral geniculate nucleus of the thalamus. We found that green dominated responses in the lower and nasal visual field and ultraviolet dominated responses in the upper visual field. We describe a subset of cells that exhibit color opponent responses.
Assuntos
Visão de Cores/fisiologia , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Animais , Opsinas dos Cones/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/fisiologia , Raios Ultravioleta , Córtex Visual/fisiologia , Campos VisuaisRESUMO
Understanding the role of corticothalamic projections in shaping visual response properties in the thalamus has been a longstanding challenge in visual neuroscience. Here, we take advantage of the cell-type specificity of a transgenic mouse line, the GN220-Ntsr1 Cre line, to manipulate selectively the activity of a layer 6 (L6) corticogeniculate population while recording visual responses in the dorsal lateral geniculate nucleus (dLGN). Although driving Ntsr1 projection input resulted in reliable reduction in evoked spike count of dLGN neurons, removing these same projections resulted in both increases and decreases in visually evoked spike count. Both increases and decreases are contrast dependent and the sign is consistent over the full range of contrasts. Tuning properties suggest wide convergence of Ntsr1 cells with similar spatial and temporal frequency tuning onto single dLGN cells and we did not find evidence that Ntsr1 cells sharpen spatiotemporal filtering. These nonspecific changes occur independently of changes in burst frequency, indicating that Ntsr1 corticogeniculate activity can result in both net excitation and net inhibition.
Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Potenciais Evocados Visuais , Camundongos , Camundongos TransgênicosRESUMO
A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations--one based on homebuilt hardware and one based on commercially available hardware--that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand.
Assuntos
Encéfalo/cirurgia , Sistemas Computacionais , Craniotomia/instrumentação , Craniotomia/métodos , Potenciais de Ação , Algoritmos , Animais , Encéfalo/fisiologia , Camundongos , Tomografia por Raios XRESUMO
Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks.
Assuntos
Potenciais de Ação , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Interpretação Estatística de Dados , Camundongos , Camundongos Endogâmicos C57BL , Estimulação LuminosaRESUMO
Objective: The sorting of neural spike data recorded by multichannel and high channel neural probes such as Neuropixels, especially in real-time, remains a significant technical challenge. Most neural spike sorting algorithms focus on sorting neural spikes post-hoc for high sorting accuracy-but reducing the processing delay for fast sorting, potentially even live sorting, is generally not possible with these algorithms.Approach: Here we report our Graph nEtwork Multichannel sorting (GEMsort) algorithm, which is largely based on graph network, to allow rapid neural spike sorting for multiple neural recording channels. This was accomplished by two innovations: In GEMsort, duplicated neural spikes recorded from multiple channels were eliminated from duplicate channels by only selecting the highest amplitude neural spike in any channel for subsequent processing. In addition, the channel from which the representative neural spike was recorded was used as an additional feature to differentiate between neural spikes recorded from different neurons having similar temporal features.Main results: Synthetic and experimentally recorded multichannel neural recordings were used to evaluate the sorting performance of GEMsort. The sorting results of GEMsort were also compared with two other state-of-the-art sorting algorithms (Kilosort and Mountainsort) in sorting time and sorting agreements.Significance: GEMsort allows rapidly sort neural spikes and is highly suitable to be implemented with digital circuitry for high processing speed and channel scalability.
Assuntos
Potenciais de Ação , Algoritmos , Neurônios , Potenciais de Ação/fisiologia , Animais , Neurônios/fisiologia , Processamento de Sinais Assistido por ComputadorRESUMO
Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.
Assuntos
Ritmo beta , Doença de Parkinson , Núcleo Subtalâmico , Núcleo Subtalâmico/fisiopatologia , Doença de Parkinson/fisiopatologia , Humanos , Masculino , Ritmo beta/fisiologia , Pessoa de Meia-Idade , Feminino , Idoso , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodosRESUMO
Myelin loss induces deficits in action potential propagation that result in neural dysfunction and contribute to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that seek to restore neural function are clinical imperatives. Here, we used in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice. We focused on the visual pathway, which is uniquely positioned to provide insights into structure-function relationships during de/remyelination. We show that endogenous remyelination is driven by recent oligodendrocyte loss and is highly efficacious following mild demyelination, but fails to restore the oligodendrocyte population when high rates of oligodendrocyte loss occur too quickly. Testing a novel thyromimetic compared to clemastine fumarate, we find it better enhances oligodendrocyte gain during remyelination and hastens recovery of neuronal function. Surprisingly, its therapeutic benefit was temporally restricted, and it acted exclusively following moderate to severe demyelination to eliminate endogenous remyelination deficits. However, complete remyelination is unnecessary as partial oligodendrocyte restoration was sufficient to recover visual neuronal function. These findings advance our understanding of remyelination and its impact on functional recovery to inform future therapeutic strategies.
RESUMO
Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.
Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Animais , Cálcio , Sinalização do Cálcio , Genótipo , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Córtex Visual/citologia , Córtex Visual/fisiologiaRESUMO
Mammalian visual behaviors, as well as responses in the neural systems underlying these behaviors, are driven by luminance and color contrast. With constantly improving tools for measuring activity in cell-type-specific populations in the mouse during visual behavior, it is important to define the extent of luminance and color information that is behaviorally accessible to the mouse. A non-uniform distribution of cone opsins in the mouse retina potentially complicates both luminance and color sensitivity; opposing gradients of short (UV-shifted) and middle (blue/green) cone opsins suggest that color discrimination and wavelength-specific luminance contrast sensitivity may differ with retinotopic location. Here we ask how well mice can discriminate color and wavelength-specific luminance changes across visuotopic space. We found that mice were able to discriminate color and were able to do so more broadly across visuotopic space than expected from the cone-opsin distribution. We also found wavelength-band-specific differences in luminance sensitivity.
Assuntos
Visão de Cores , Cor , Sensibilidades de Contraste , Luz , Visão Ocular , Animais , CamundongosRESUMO
The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.