Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr ; 271: 114042, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38570031

RESUMO

OBJECTIVE: The objective of this study was to examine the association of cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, with late-onset sepsis for extremely preterm infants (<29 weeks of gestational age) on vs off invasive mechanical ventilation. STUDY DESIGN: This is a retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in 5 level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean gestational age: 26.4 weeks, SD 1.71). Monitoring data were available and analyzed for 719 infants (47 512 patient-days); of whom, 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72 hours after birth and ≥5-day antibiotics). RESULTS: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer events with oxygen saturation <80% (IH80) and more bradycardia events before sepsis. IH events were associated with higher sepsis risk but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model including postmenstrual age, cardiorespiratory variables (apnea, periodic breathing, IH80, and bradycardia), and ventilator status predicted sepsis with an area under the receiver operator characteristic curve of 0.783. CONCLUSION: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.


Assuntos
Apneia , Bradicardia , Hipóxia , Lactente Extremamente Prematuro , Sepse , Humanos , Bradicardia/epidemiologia , Bradicardia/etiologia , Apneia/epidemiologia , Estudos Retrospectivos , Recém-Nascido , Hipóxia/complicações , Feminino , Masculino , Sepse/complicações , Sepse/epidemiologia , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/diagnóstico , Respiração Artificial , Unidades de Terapia Intensiva Neonatal , Idade Gestacional
2.
Psychosom Med ; 86(1): 37-43, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769227

RESUMO

OBJECTIVES: Mitochondrial dysfunction is implicated in the pathophysiology of psychiatric disorders. Levels of circulating cell-free mitochondrial DNA (cf-mtDNA) are observed to be altered in depression. However, the few studies that have measured cf-mtDNA in depression have reported conflicting findings. This study examined cf-mtDNA and depressive symptoms in low-active adults who smoke. METHODS: Participants were adults 18 to 65 years old ( N = 109; 76% female) with low baseline physical activity and depressive symptoms recruited for a smoking cessation study. Self-report measures assessed depression severity, positive and negative affect, and behavioral activation. Blood was collected and analyzed for cf-mtDNA. Relationships between depressive symptoms and cf-mtDNA were examined with correlations and linear regression. RESULTS: Levels of cf-mtDNA were associated with categorically defined depression (Center for Epidemiologic Studies Depression Scale score >15), lower positive affect, and decreased behavioral activation ( p < .05). Relationships remained significant after adjustment for age, sex, and nicotine dependence. In a linear regression model including all depressive symptom measures as predictors, Center for Epidemiologic Studies Depression Scale group and lower positive affect remained significant. CONCLUSIONS: This work suggests that mitochondrial changes are associated with depressive symptoms in low-active adults who smoke. Higher levels of cf-mtDNA in association with depression and with lower positive affect and decreased behavioral activation are consistent with a possible role for mitochondrial function in depressive symptoms.


Assuntos
Ácidos Nucleicos Livres , Tabagismo , Adulto , Humanos , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Masculino , Depressão/complicações , DNA Mitocondrial/genética , Mitocôndrias , Fumar
3.
Pediatr Res ; 95(4): 1060-1069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857848

RESUMO

BACKGROUND: In extremely preterm infants, persistence of cardioventilatory events is associated with long-term morbidity. Therefore, the objective was to characterize physiologic growth curves of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants during the first few months of life. METHODS: The Prematurity-Related Ventilatory Control study included 717 preterm infants <29 weeks gestation. Waveforms were downloaded from bedside monitors with a novel sharing analytics strategy utilized to run software locally, with summary data sent to the Data Coordinating Center for compilation. RESULTS: Apnea, periodic breathing, and intermittent hypoxemia events rose from day 3 of life then fell to near-resolution by 8-12 weeks of age. Apnea/intermittent hypoxemia were inversely correlated with gestational age, peaking at 3-4 weeks of age. Periodic breathing was positively correlated with gestational age peaking at 31-33 weeks postmenstrual age. Females had more periodic breathing but less intermittent hypoxemia/bradycardia. White infants had more apnea/periodic breathing/intermittent hypoxemia. Infants never receiving mechanical ventilation followed similar postnatal trajectories but with less apnea and intermittent hypoxemia, and more periodic breathing. CONCLUSIONS: Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. IMPACT: Physiologic curves of cardiorespiratory events in extremely preterm-born infants offer (1) objective measures to assess individual patient courses and (2) guides for research into control of ventilation, biomarkers and outcomes. Presented are updated maturational trajectories of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in 717 infants born <29 weeks gestation from the multi-site NHLBI-funded Pre-Vent study. Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. Different time courses for apnea and periodic breathing suggest different maturational mechanisms.


Assuntos
Doenças do Prematuro , Transtornos Respiratórios , Lactente , Feminino , Recém-Nascido , Humanos , Lactente Extremamente Prematuro , Apneia , Bradicardia/terapia , Respiração , Hipóxia
4.
Am J Respir Crit Care Med ; 208(1): 79-97, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219236

RESUMO

Rationale: Immature control of breathing is associated with apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants. However, it is not clear if such events independently predict worse respiratory outcome. Objectives: To determine if analysis of cardiorespiratory monitoring data can predict unfavorable respiratory outcomes at 40 weeks postmenstrual age (PMA) and other outcomes, such as bronchopulmonary dysplasia at 36 weeks PMA. Methods: The Prematurity-related Ventilatory Control (Pre-Vent) study was an observational multicenter prospective cohort study including infants born at <29 weeks of gestation with continuous cardiorespiratory monitoring. The primary outcome was either "favorable" (alive and previously discharged or inpatient and off respiratory medications/O2/support at 40 wk PMA) or "unfavorable" (either deceased or inpatient/previously discharged on respiratory medications/O2/support at 40 wk PMA). Measurements and Main Results: A total of 717 infants were evaluated (median birth weight, 850 g; gestation, 26.4 wk), 53.7% of whom had a favorable outcome and 46.3% of whom had an unfavorable outcome. Physiologic data predicted unfavorable outcome, with accuracy improving with advancing age (area under the curve, 0.79 at Day 7, 0.85 at Day 28 and 32 wk PMA). The physiologic variable that contributed most to prediction was intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <90%. Models with clinical data alone or combining physiologic and clinical data also had good accuracy, with areas under the curve of 0.84-0.85 at Days 7 and 14 and 0.86-0.88 at Day 28 and 32 weeks PMA. Intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <80% was the major physiologic predictor of severe bronchopulmonary dysplasia and death or mechanical ventilation at 40 weeks PMA. Conclusions: Physiologic data are independently associated with unfavorable respiratory outcome in extremely preterm infants.


Assuntos
Displasia Broncopulmonar , Lactente Extremamente Prematuro , Lactente , Recém-Nascido , Humanos , Estudos Prospectivos , Respiração Artificial , Hipóxia
5.
Respir Res ; 23(1): 340, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496404

RESUMO

BACKGROUND: Premature infants, subjected to supplemental oxygen and mechanical ventilation, may develop bronchopulmonary dysplasia, a chronic lung disease characterized by alveolar dysplasia and impaired vascularization. We and others have shown that hyperoxia causes senescence in cultured lung epithelial cells and fibroblasts. Although miR-34a modulates senescence, it is unclear whether it contributes to hyperoxia-induced senescence. We hypothesized that hyperoxia increases miR-34a levels, leading to cellular senescence. METHODS: We exposed mouse lung epithelial (MLE-12) cells and primary human small airway epithelial cells to hyperoxia (95% O2/5% CO2) or air (21% O2/5% CO2) for 24 h. Newborn mice (< 12 h old) were exposed to hyperoxia (> 95% O2) for 3 days and allowed to recover in room air until postnatal day 7. Lung samples from premature human infants requiring mechanical ventilation and control subjects who were not mechanically ventilated were employed. RESULTS: Hyperoxia caused senescence as indicated by loss of nuclear lamin B1, increased p21 gene expression, and senescence-associated secretory phenotype factors. Expression of miR-34a-5p was increased in epithelial cells and newborn mice exposed to hyperoxia, and in premature infants requiring mechanical ventilation. Transfection with a miR-34a-5p inhibitor reduced hyperoxia-induced senescence in MLE-12 cells. Additionally, hyperoxia increased protein levels of the oncogene and tumor-suppressor Krüppel-like factor 4 (KLF4), which were inhibited by a miR-34a-5p inhibitor. Furthermore, KLF4 knockdown by siRNA transfection reduced hyperoxia-induced senescence. CONCLUSION: Hyperoxia increases miR-34a-5p, leading to senescence in lung epithelial cells. This is dictated in part by upregulation of KLF4 signaling. Therefore, inhibiting hyperoxia-induced senescence via miR-34a-5p or KLF4 suppression may provide a novel therapeutic strategy to mitigate the detrimental consequences of hyperoxia in the neonatal lung.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Fator 4 Semelhante a Kruppel , MicroRNAs , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/tratamento farmacológico , Dióxido de Carbono , Senescência Celular , Células Epiteliais/metabolismo , Hiperóxia/genética , Hiperóxia/metabolismo , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo
6.
Respir Res ; 23(1): 205, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964084

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants that may cause long-term lung dysfunction. Accumulating evidence supports the vascular hypothesis of BPD, in which lung endothelial cell dysfunction drives this disease. We recently reported that endothelial carnitine palmitoyltransferase 1a (Cpt1a) is reduced by hyperoxia, and that endothelial cell-specific Cpt1a knockout mice are more susceptible to developing hyperoxia-induced injury than wild type mice. Whether Cpt1a upregulation attenuates hyperoxia-induced endothelial cell dysfunction and lung injury remains unknown. We hypothesized that upregulation of Cpt1a by baicalin or L-carnitine ameliorates hyperoxia-induced endothelial cell dysfunction and persistent lung injury. METHODS: Lung endothelial cells or newborn mice (< 12 h old) were treated with baicalin or L-carnitine after hyperoxia (50% and 95% O2) followed by air recovery. RESULTS: We found that incubation with L-carnitine (40 and 80 mg/L) and baicalin (22.5 and 45 mg/L) reduced hyperoxia-induced apoptosis, impaired cell migration and angiogenesis in cultured lung endothelial cells. This was associated with increased Cpt1a gene expression. In mice, neonatal hyperoxia caused persistent alveolar and vascular simplification in a concentration-dependent manner. Treatment with L-carnitine (150 and 300 mg/kg) and baicalin (50 and 100 mg/kg) attenuated neonatal hyperoxia-induced alveolar and vascular simplification in adult mice. These effects were diminished in endothelial cell-specific Cpt1a knockout mice. CONCLUSIONS: Upregulating Cpt1a by baicalin or L-carnitine ameliorates hyperoxia-induced lung endothelial cell dysfunction, and persistent alveolar and vascular simplification. These findings provide potential therapeutic avenues for using L-carnitine and baicalin as Cpt1a upregulators to prevent persistent lung injury in premature infants with BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Doenças Vasculares , Animais , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/prevenção & controle , Carnitina/farmacologia , Carnitina O-Palmitoiltransferase/genética , Células Endoteliais/metabolismo , Hiperóxia/complicações , Hiperóxia/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Camundongos Knockout
7.
Pediatr Res ; 90(1): 58-65, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33144707

RESUMO

BACKGROUND: Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function. METHODS: Here we investigated the role of a very short exposure to hyperoxia (95% O2, 5% CO2) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice. RESULTS: In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14. CONCLUSION: A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease. IMPACT: Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.


Assuntos
Hiperóxia/patologia , Mitocôndrias/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Linhagem Celular , Camundongos , Fosforilação Oxidativa
8.
J Pathol ; 252(4): 411-422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815166

RESUMO

Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-ß inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Displasia Broncopulmonar/patologia , Células Endoteliais/patologia , Hiperóxia/patologia , Hipertensão Pulmonar/patologia , Pulmão/patologia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Células Endoteliais/metabolismo , Feminino , Hiperóxia/complicações , Hiperóxia/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Fosforilação , Fatores Sexuais , Proteínas Smad/metabolismo , Remodelação Vascular/fisiologia
9.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L845-L851, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191117

RESUMO

Premature infants are often exposed to positive pressure ventilation and supplemental oxygen, which leads to the development of chronic lung disease (CLD). There are currently no standard serum biomarkers used for prediction or early detection of patients who go on to develop CLD. MicroRNAs (miRNAs) are a novel class of naturally occurring, short, noncoding substances that regulate gene expression at the posttranscriptional level and cause translational inhibition and/or mRNA degradation and present in body fluids packaged in extracellular vesicles (EVs), rendering them remarkably stable. Our aim was to evaluate miRNAs identified in serum EVs of premature infants as potential biomarkers for CLD. Serum EVs were extracted from premature infants at birth and on the 28th day of life (DOL). Using a human miRNA array, we identified 62 miRNAs that were universally expressed in CLD patients and non-CLD patients. Of the 62 miRNAs, 59 miRNAs and 44 miRNAs were differentially expressed on DOL0 and DOL28 in CLD and non-CLD patients, respectively. Of these miRNAs, serum EV miR-21 was upregulated in CLD patients on DOL28 compared with levels at birth and downregulated in non-CLD patients on DOL28 compared with levels at birth. In neonatal mice exposed to hyperoxia for 7days, as a model of CLD, five miRNAs (miR-34a, miR-21, miR-712, miR-682, and miR-221) were upregulated, and 7 miRNAs (miR-542-5p, miR-449a, miR-322, miR-190b, miR-153, miR-335-3p, miR-377) were downregulated. MiR-21 was detected as a common miRNA that changed in CLD patients and in the hyperoxia exposed mice. We conclude that EV miR-21 may be a biomarker of CLD.


Assuntos
Hiperóxia/diagnóstico , Hiperóxia/genética , Pneumopatias/diagnóstico , Pneumopatias/genética , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Antagomirs/genética , Antagomirs/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hiperóxia/sangue , Hiperóxia/fisiopatologia , Recém-Nascido , Recém-Nascido Prematuro , Pneumopatias/sangue , Pneumopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/sangue , MicroRNAs/classificação , Análise de Sequência com Séries de Oligonucleotídeos , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Prognóstico
10.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992485

RESUMO

Heme oxygenase (HO) consists of inducible (HO-1) and constitutive (HO-2) isoforms that are encoded by Hmox1 and Hmox2 genes, respectively. As an anti-inflammatory and antioxidant molecule, HO participates in the development of metabolic diseases. Whether Hmox deficiency causes metabolic abnormalities under basal conditions remains unclear. We hypothesized that HO-1 and HO-2 differentially affect global and adipose tissue metabolism. To test this hypothesis, we determined insulin sensitivity, glucose tolerance, energy expenditure, and respiratory exchange ratio in global Hmox1-/- and Hmox2-/- mice. Body weight was reduced in female but not male Hmox1-/- and Hmox2-/- mice. Reduced insulin sensitivity and physical activity were observed in Hmox1-/- but not Hmox2-/- mice. Deletion of either Hmox1 or Hmox2 had no effects on glucose tolerance, energy expenditure or respiratory exchange ratio. Mitochondrial respiration was unchanged in gonadal fat pads (white adipose tissue, WAT) of Hmox1-/- mice. Hmox2 deletion increased proton leak and glycolysis in gonadal, but not interscapular fat tissues (brown adipose tissue, BAT). Uncoupling protein and Hmox1 genes were unchanged in gonadal fat pads of Hmox2-/- mice. Conclusively, HO-1 maintains insulin sensitivity, while HO-2 represses glycolysis and proton leak in the WAT under basal condition. This suggests that HO-1 and HO-2 differentially modulate metabolism, which may impact the metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Glicólise/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Resistência à Insulina/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Peso Corporal , Respiração Celular , Feminino , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase-1/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
11.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971746

RESUMO

Heme oxygenase-1 is induced by many cellular stressors and catalyzes the breakdown of heme to generate carbon monoxide and bilirubin, which confer cytoprotection. The role of HO-1 likely extends beyond the simple production of antioxidants, for example HO-1 activity has also been implicated in metabolism, but this function remains unclear. Here we used an HO-1 knockout lung cell line to further define the contribution of HO-1 to cellular metabolism. We found that knockout cells exhibit reduced growth and mitochondrial respiration, measured by oxygen consumption rate. Specifically, we found that HO-1 contributed to electron transport chain activity and utilization of certain mitochondrial fuels. Loss of HO-1 had no effect on intracellular non-heme iron concentration or on proteins whose levels and activities depend on available iron. We show that HO-1 supports essential functions of mitochondria, which highlights the protective effects of HO-1 in diverse pathologies and tissue types. Our results suggest that regulation of heme may be an equally significant role of HO-1.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons , Metabolismo Energético , Células Epiteliais/enzimologia , Heme Oxigenase-1/metabolismo , Pulmão/enzimologia , Mitocôndrias/enzimologia , Linhagem Celular , Transporte de Elétrons , Heme Oxigenase-1/genética , Humanos , Mitocôndrias/genética , Consumo de Oxigênio
13.
Am J Respir Cell Mol Biol ; 60(6): 667-677, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30571144

RESUMO

In neonates, hyperoxia or positive pressure ventilation causes continued lung injury characterized by simplified vascularization and alveolarization, which are the hallmarks of bronchopulmonary dysplasia. Although endothelial cells (ECs) have metabolic flexibility to maintain cell function under stress, it is unknown whether hyperoxia causes metabolic dysregulation in ECs, leading to lung injury. We hypothesized that hyperoxia alters EC metabolism, which causes EC dysfunction and lung injury. To test this hypothesis, we exposed lung ECs to hyperoxia (95% O2/5% CO2) followed by air recovery (O2/rec). We found that O2/rec reduced mitochondrial oxidative phosphorylation without affecting mitochondrial DNA copy number or mitochondrial mass and that it specifically decreased fatty acid oxidation (FAO) in ECs. This was associated with increased ceramide synthesis and apoptosis. Genetic deletion of carnitine palmitoyltransferase 1a (Cpt1a), a rate-limiting enzyme for carnitine shuttle, further augmented O2/rec-induced apoptosis. O2/rec-induced ceramide synthesis and apoptosis were attenuated when the FAO was enhanced by l-carnitine. Newborn mice were exposed to hyperoxia (>95% O2) between Postnatal Days 1 and 4 and were administered l-carnitine (150 and 300 mg/kg, i.p.) or etomoxir, a specific Cpt1 inhibitor (30 mg/kg, i.p.), daily between Postnatal Days 10 and 14. Etomoxir aggravated O2/rec-induced apoptosis and simplified alveolarization and vascularization in mouse lungs. Similarly, arrested alveolarization and reduced vessel numbers were further augmented in EC-specific Cpt1a-knockout mice compared with wild-type littermates in response to O2/rec. Treatment with l-carnitine (300 mg/kg) attenuated O2/rec-induced lung injury, including simplified alveolarization and decreased vessel numbers. Altogether, enhancing FAO protects against hyperoxia-induced EC apoptosis and lung injury in neonates.


Assuntos
Apoptose , Células Endoteliais/patologia , Ácidos Graxos/metabolismo , Hiperóxia/complicações , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Animais , Animais Recém-Nascidos , Carnitina/farmacologia , Carnitina O-Palmitoiltransferase/metabolismo , Respiração Celular , Ceramidas/metabolismo , Peroxidação de Lipídeos , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Oxirredução , Oxigênio , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/patologia
17.
Pediatr Res ; 85(6): 769-776, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733614

RESUMO

BACKGROUND: The increasing incidence of bronchopulmonary dysplasia in premature babies may be due in part to immature ventilatory control, contributing to hypoxemia. The latter responds to ventilation and/or oxygen therapy, treatments associated with adverse sequelae. This is an overview of the Prematurity-Related Ventilatory Control Study which aims to analyze the under-utilized cardiorespiratory continuous waveform monitoring data to delineate mechanisms of immature ventilatory control in preterm infants and identify predictive markers. METHODS: Continuous ECG, heart rate, respiratory, and oxygen saturation data will be collected throughout the NICU stay in 500 infants < 29 wks gestation across 5 centers. Mild permissive hypercapnia, and hyperoxia and/or hypoxia assessments will be conducted in a subcohort of infants along with inpatient questionnaires, urine, serum, and DNA samples. RESULTS: Primary outcomes will be respiratory status at 40 wks and quantitative measures of immature breathing plotted on a standard curve for infants matched at 36-37 wks. Physiologic and/or biologic determinants will be collected to enhance the predictive model linking ventilatory control to outcomes. CONCLUSIONS: By incorporating bedside monitoring variables along with biomarkers that predict respiratory outcomes we aim to elucidate individualized cardiopulmonary phenotypes and mechanisms of ventilatory control contributing to adverse respiratory outcomes in premature infants.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Protocolos Clínicos , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Monitorização Fisiológica , Estudos Prospectivos , Projetos de Pesquisa , Fenômenos Fisiológicos Respiratórios
18.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L544-L554, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351437

RESUMO

The metabolism of nutrient substrates, including glucose, glutamine, and fatty acids, provides acetyl-CoA for the tricarboxylic acid cycle to generate energy, as well as metabolites for the biosynthesis of biomolecules, including nucleotides, proteins, and lipids. It has been shown that metabolism of glucose, fatty acid, and glutamine plays important roles in modulating cellular proliferation, differentiation, apoptosis, autophagy, senescence, and inflammatory responses. All of these cellular processes contribute to the pathogenesis of chronic lung diseases, including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. Recent studies demonstrate that metabolic reprogramming occurs in patients with and animal models of chronic lung diseases, suggesting that metabolic dysregulation may participate in the pathogenesis and progression of these diseases. In this review, we briefly discuss the catabolic pathways for glucose, glutamine, and fatty acids, and focus on how metabolic reprogramming of these pathways impacts cellular functions and leads to the development of these chronic lung diseases. We also highlight how targeting metabolic pathways can be utilized in the prevention and treatment of these diseases.


Assuntos
Displasia Broncopulmonar/patologia , Reprogramação Celular , Doenças Metabólicas/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/patologia , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo
19.
Trans Am Clin Climatol Assoc ; 129: 195-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30166714

RESUMO

In premature neonates, hyperoxic exposure contributes to lung injury characterized by simplified alveolarization and arrested vascularization. These are the hallmarks of bronchopulmonary dysplasia, a disease with long-term consequences on pulmonary and neurodevelopmental function. Lung vascular development and endothelial cell signals are synergistically important for normal alveolarization. It has been shown that metabolism of nutrients such as glucose, fatty acid, and glutamine is key in controlling proliferation, differentiation, apoptosis, autophagy, senescence, and inflammatory responses, which contribute to the pathogenesis of chronic lung diseases, including bronchopulmonary dysplasia. Recent studies show that metabolic reprogramming occurs in vitro in cells and in vivo in animal models and more importantly in patients with bronchopulmonary dysplasia, suggesting that metabolic dysregulation may participate in the pathogenesis and progression of these diseases. Although endothelial cells rely mainly on glycolysis for bioenergetics, they have the metabolic flexibility to maintain cell function under stress or nutrient deprivation. Others have shown that hyperoxia decreases glycolysis and oxidative phosphorylation in epithelial cells. Nevertheless, endothelial cells show enhanced mitochondrial fatty acid use after exposure to hyperoxia. This may serve to preserve endothelial cell proliferation and alveolarization, and thereby mitigate neonatal hyperoxic lung injury.


Assuntos
Displasia Broncopulmonar/metabolismo , Células Endoteliais/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Mitocôndrias/metabolismo , Regeneração , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Proliferação de Células , Células Endoteliais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Idade Gestacional , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Nascimento Prematuro , Fatores de Risco
20.
Pediatr Res ; 81(6): 926-931, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28099425

RESUMO

BACKGROUND: BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase (HO)-1. The effects of Bach1 disruption on hyperoxic lung injury in newborn mice have not been determined. We aimed to investigate the role of Bach1 in the newborns exposed to hyperoxia. METHODS: Bach1-/- and WT newborn mice were exposed to 21% or 95% oxygen for 4 d and were then allowed to recover in room air. Lung histology was assessed and lung Bach1, HO-1, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 mRNA levels were evaluated using RT-PCR. Lung inflammatory cytokine levels were determined using cytometric bead arrays. RESULTS: After 10 d recovery from neonatal hyperoxia, Bach1-/- mice showed improved lung alveolarization compared with WT. HO-1, IL-6, and MCP-1 mRNA levels and IL-6 and MCP-1 protein levels were significantly increased in the Bach1-/- lungs exposed to neonatal hyperoxia. Although an increase in apoptosis was observed in the Bach1-/- and WT lungs after neonatal hyperoxia, there were no differences in apoptosis between these groups. CONCLUSION: Bach1-/- newborn mice were well-recovered from hyperoxia-induced lung injury. This effect is likely achieved by the antioxidant/anti-inflammatory activity of HO-1 or by the transient overexpression of proinflammatory cytokines.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Inflamação/genética , Lesão Pulmonar/genética , Regulação para Cima , Animais , Animais Recém-Nascidos , Heme Oxigenase-1/genética , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa