Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340339

RESUMO

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175987

RESUMO

Neuropathic pain is a frequent feature of diabetic peripheral neuropathy (DPN) and small fiber neuropathy (SFN). Resolving the genetic architecture of these painful neuropathies will lead to better disease management strategies, counselling and intervention. Our aims were to profile ten sodium channel genes (SCG) expressed in a nociceptive pathway in painful and painless DPN and painful and painless SFN patients, and to provide a perspective for clinicians who assess patients with painful peripheral neuropathy. Between June 2014 and September 2016, 1125 patients with painful-DPN (n = 237), painless-DPN (n = 309), painful-SFN (n = 547) and painless-SFN (n = 32), recruited in four different centers, were analyzed for SCN3A, SCN7A-SCN11A and SCN1B-SCN4B variants by single molecule Molecular inversion probes-Next Generation Sequence. Patients were grouped based on phenotype and the presence of SCG variants. Screening of SCN3A, SCN7A-SCN11A, and SCN1B-SCN4B revealed 125 different (potential) pathogenic variants in 194 patients (17.2%, n = 194/1125). A potential pathogenic variant was present in 18.1% (n = 142/784) of painful neuropathy patients vs. 15.2% (n = 52/341) of painless neuropathy patients (17.3% (n = 41/237) for painful-DPN patients, 14.9% (n = 46/309) for painless-DPN patients, 18.5% (n = 101/547) for painful-SFN patients, and 18.8% (n = 6/32) for painless-SFN patients). Of the variants detected, 70% were in SCN7A, SCN9A, SCN10A and SCN11A. The frequency of SCN9A and SCN11A variants was the highest in painful-SFN patients, SCN7A variants in painful-DPN patients, and SCN10A variants in painless-DPN patients. Our findings suggest that rare SCG genetic variants may contribute to the development of painful neuropathy. Genetic profiling and SCG variant identification should aid in a better understanding of the genetic variability in patients with painful and painless neuropathy, and may lead to better risk stratification and the development of more targeted and personalized pain treatments.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuralgia/patologia , Neuropatias Diabéticas/patologia , Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.7/genética
3.
Hum Reprod ; 37(11): 2700-2708, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36149256

RESUMO

STUDY QUESTION: Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER: Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY: Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION: We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION: Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS: The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S): M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Estudos Prospectivos , Testes Genéticos/métodos , Blastocisto , Sequenciamento de Nucleotídeos em Larga Escala
4.
Eur Heart J ; 42(2): 162-174, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33156912

RESUMO

AIMS: The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now, clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not considering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysiological differences between DCM subgroups. METHODS AND RESULTS: We included 795 consecutive DCM patients from the Maastricht Cardiomyopathy Registry who underwent in-depth phenotyping, comprising extensive clinical data on aetiology and comorbodities, imaging and endomyocardial biopsies. Four mutually exclusive and clinically distinct phenogroups (PG) were identified based upon unsupervised hierarchical clustering of principal components: [PG1] mild systolic dysfunction, [PG2] auto-immune, [PG3] genetic and arrhythmias, and [PG4] severe systolic dysfunction. RNA-sequencing of cardiac samples (n = 91) revealed a distinct underlying molecular profile per PG: pro-inflammatory (PG2, auto-immune), pro-fibrotic (PG3; arrhythmia), and metabolic (PG4, low EF) gene expression. Furthermore, event-free survival differed among the four phenogroups, also when corrected for well-known clinical predictors. Decision tree modelling identified four clinical parameters (auto-immune disease, EF, atrial fibrillation, and kidney function) by which every DCM patient from two independent DCM cohorts could be placed in one of the four phenogroups with corresponding outcome (n = 789; Spain, n = 352 and Italy, n = 437), showing a feasible applicability of the phenogrouping. CONCLUSION: The present study identified four different DCM phenogroups associated with significant differences in clinical presentation, underlying molecular profiles and outcome, paving the way for a more personalized treatment approach.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Dilatada/genética , Análise por Conglomerados , Humanos , Itália , Fenótipo , Espanha
5.
Hum Reprod ; 34(8): 1608-1619, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348829

RESUMO

STUDY QUESTION: Can reduced representation genome sequencing offer an alternative to single nucleotide polymorphism (SNP) arrays as a generic and genome-wide approach for comprehensive preimplantation genetic testing for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR) in human embryo biopsy samples? SUMMARY ANSWER: Reduced representation genome sequencing, with OnePGT, offers a generic, next-generation sequencing-based approach for automated haplotyping and copy-number assessment, both combined or independently, in human single blastomere and trophectoderm samples. WHAT IS KNOWN ALREADY: Genome-wide haplotyping strategies, such as karyomapping and haplarithmisis, have paved the way for comprehensive PGT, i.e. leveraging PGT-M, PGT-A and PGT-SR in a single workflow. These methods are based upon SNP array technology. STUDY DESIGN, SIZE, DURATION: This multi-centre verification study evaluated the concordance of PGT results for a total of 225 embryos, including 189 originally tested for a monogenic disorder and 36 tested for a translocation. Concordance for whole chromosome aneuploidies was also evaluated where whole genome copy-number reference data were available. Data analysts were kept blind to the results from the reference PGT method. PARTICIPANTS/MATERIALS, SETTING, METHODS: Leftover blastomere/trophectoderm whole genome amplified (WGA) material was used, or secondary trophectoderm biopsies were WGA. A reduced representation library from WGA DNA together with bulk DNA from phasing references was processed across two study sites with the Agilent OnePGT solution. Libraries were sequenced on an Illumina NextSeq500 system, and data were analysed with Agilent Alissa OnePGT software. The embedded PGT-M pipeline utilises the principles of haplarithmisis to deduce haplotype inheritance whereas both the PGT-A and PGT-SR pipelines are based upon read-count analysis in order to evaluate embryonic ploidy. Concordance analysis was performed for both analysis strategies against the reference PGT method. MAIN RESULTS AND THE ROLE OF CHANCE: PGT-M analysis was performed on 189 samples. For nine samples, the data quality was too poor to analyse further, and for 20 samples, no result could be obtained mainly due to biological limitations of the haplotyping approach, such as co-localisation of meiotic crossover events and nullisomy for the chromosome of interest. For the remaining 160 samples, 100% concordance was obtained between OnePGT and the reference PGT-M method. Equally for PGT-SR, 100% concordance for all 36 embryos tested was demonstrated. Moreover, with embryos originally analysed for PGT-M or PGT-SR for which genome-wide copy-number reference data were available, 100% concordance was shown for whole chromosome copy-number calls (PGT-A). LIMITATIONS, REASONS FOR CAUTION: Inherent to haplotyping methodologies, processing of additional family members is still required. Biological limitations caused inconclusive results in 10% of cases. WIDER IMPLICATIONS OF THE FINDINGS: Employment of OnePGT for PGT-M, PGT-SR, PGT-A or combined as comprehensive PGT offers a scalable platform, which is inherently generic and thereby, eliminates the need for family-specific design and optimisation. It can be considered as both an improvement and complement to the current methodologies for PGT. STUDY FUNDING/COMPETING INTEREST(S): Agilent Technologies, the KU Leuven (C1/018 to J.R.V. and T.V.) and the Horizon 2020 WIDENLIFE (692065 to J.R.V. and T.V). H.M. is supported by the Research Foundation Flanders (FWO, 11A7119N). M.Z.E, J.R.V. and T.V. are co-inventors on patent applications: ZL910050-PCT/EP2011/060211- WO/2011/157846 'Methods for haplotyping single cells' and ZL913096-PCT/EP2014/068315 'Haplotyping and copy-number typing using polymorphic variant allelic frequencies'. T.V. and J.R.V. are co-inventors on patent application: ZL912076-PCT/EP2013/070858 'High-throughput genotyping by sequencing'. Haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') has been licensed to Agilent Technologies. The following patents are pending for OnePGT: US2016275239, AU2014345516, CA2928013, CN105874081, EP3066213 and WO2015067796. OnePGT is a registered trademark. D.L., J.T. and R.L.R. report personal fees during the conduct of the study and outside the submitted work from Agilent Technologies. S.H. and K.O.F. report personal fees and other during the conduct of the study and outside the submitted work from Agilent Technologies. J.A. reports personal fees and other during the conduct of the study from Agilent Technologies and personal fees from Agilent Technologies and UZ Leuven outside the submitted work. B.D. reports grants from IWT/VLAIO, personal fees during the conduct of the study from Agilent Technologies and personal fees and other outside the submitted work from Agilent Technologies. In addition, B.D. has a patent 20160275239 - Genetic Analysis Method pending. The remaining authors have no conflicts of interest.


Assuntos
Testes Genéticos/métodos , Haplótipos , Diagnóstico Pré-Implantação/métodos , Técnicas de Cultura Embrionária , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
6.
Eur Heart J ; 39(10): 864-873, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377983

RESUMO

Aims: Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy (DCM). We aim to study clinical parameters and long-term outcomes related to the TTNtv genotype and determine the related molecular changes at tissue level in TTNtv DCM patients. Methods and results: A total of 303 consecutive and extensively phenotyped DCM patients (including cardiac imaging, Holter monitoring, and endomyocardial biopsy) underwent DNA sequencing of 47 cardiomyopathy-associated genes including TTN, yielding 38 TTNtv positive (13%) patients. At long-term follow-up (median of 45 months, up to 12 years), TTNtv DCM patients had increased ventricular arrhythmias compared to other DCM, but a similar survival. Arrhythmias are especially prominent in TTNtv patients with an additional environmental trigger (i.e. virus infection, cardiac inflammation, systemic disease, toxic exposure). Importantly, cardiac mass is reduced in TTNtv patients, despite similar cardiac function and dimensions at cardiac magnetic resonance. These enhanced life-threatening arrhythmias and decreased cardiac mass in TTNtv DCM patients go along with significant cardiac energetic and matrix alterations. All components of the mitochondrial electron transport chain are significantly upregulated in TTNtv hearts at RNA-sequencing. Also, interstitial fibrosis was augmented in TTNtv patients at histological and transcript level. Conclusion: Truncating titin variants lead to pronounced cardiac alterations in mitochondrial function, with increased interstitial fibrosis and reduced hypertrophy. Those structural and metabolic alterations in TTNtv hearts go along with increased ventricular arrhythmias at long-term follow-up, with a similar survival and overall cardiac function.


Assuntos
Cardiomiopatias , Conectina , Arritmias Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Conectina/genética , Conectina/metabolismo , Conectina/fisiologia , Fibrose/metabolismo , Humanos , Mitocôndrias/metabolismo
8.
RNA Biol ; 12(1): 30-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826412

RESUMO

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Humanos , Camundongos
9.
Arch Toxicol ; 88(4): 1023-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390151

RESUMO

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.


Assuntos
Carcinógenos/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Mutagênicos/toxicidade , RNA Mensageiro/metabolismo , Toxicogenética/métodos , Algoritmos , Animais , Carcinógenos/classificação , Análise Discriminante , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/classificação , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Tempo
10.
Radiother Oncol ; 190: 109968, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898438

RESUMO

BACKGROUND AND PURPOSE: Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS: GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS: The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION: GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Humanos , Animais , Camundongos , Hipóxia/metabolismo , Hipóxia Celular , Vesículas Extracelulares/metabolismo , Proteínas Associadas aos Microtúbulos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
11.
Sci Rep ; 13(1): 564, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631531

RESUMO

Allele-specific expression (ASE) analysis detects the relative abundance of alleles at heterozygous loci as a proxy for cis-regulatory variation, which affects the personal transcriptome and proteome. This study describes the development and application of an ASE analysis pipeline on a unique cohort of 87 well phenotyped and RNA sequenced patients from the Maastricht Cardiomyopathy Registry with dilated cardiomyopathy (DCM), a complex genetic disorder with a remaining gap in explained heritability. Regulatory processes for which ASE is a proxy might explain this gap. We found an overrepresentation of known DCM-associated genes among the significant results across the cohort. In addition, we were able to find genes of interest that have not been associated with DCM through conventional methods such as genome-wide association or differential gene expression studies. The pipeline offers RNA sequencing data processing, individual and population level ASE analyses as well as group comparisons and several intuitive visualizations such as Manhattan plots and protein-protein interaction networks. With this pipeline, we found evidence supporting the case that cis-regulatory variation contributes to the phenotypic heterogeneity of DCM. Additionally, our results highlight that ASE analysis offers an additional layer to conventional genomic and transcriptomic analyses for candidate gene identification and biological insight.


Assuntos
Cardiomiopatia Dilatada , Humanos , Alelos , Cardiomiopatia Dilatada/genética , Regulação da Expressão Gênica , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
Nat Genet ; 55(2): 268-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658433

RESUMO

Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcriptoma , Humanos , Camundongos , Animais , Pré-Escolar , Transcriptoma/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Genoma , Envelhecimento/genética
13.
JACC Basic Transl Sci ; 8(4): 406-418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37138803

RESUMO

Dilated cardiomyopathy is a heterogeneous disease characterized by multiple genetic and environmental etiologies. The majority of patients are treated the same despite these differences. The cardiac transcriptome provides information on the patient's pathophysiology, which allows targeted therapy. Using clustering techniques on data from the genotype, phenotype, and cardiac transcriptome of patients with early- and end-stage dilated cardiomyopathy, more homogeneous patient subgroups are identified based on shared underlying pathophysiology. Distinct patient subgroups are identified based on differences in protein quality control, cardiac metabolism, cardiomyocyte function, and inflammatory pathways. The identified pathways have the potential to guide future treatment and individualize patient care.

14.
Front Cell Dev Biol ; 9: 686096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235151

RESUMO

INTRODUCTION: In addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation. MATERIALS: Sox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays. RESULTS: Early Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown. CONCLUSION: Here, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate in vivo.

15.
Eur J Heart Fail ; 23(6): 933-944, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928704

RESUMO

AIMS: To determine the prognostic value of multilevel assessment of fibrosis in dilated cardiomyopathy (DCM) patients. METHODS AND RESULTS: We quantified fibrosis in 209 DCM patients at three levels: (i) non-invasive late gadolinium enhancement (LGE) at cardiac magnetic resonance (CMR); (ii) blood biomarkers [amino-terminal propeptide of procollagen type III (PIIINP) and carboxy-terminal propeptide of procollagen type I (PICP)], (iii) invasive endomyocardial biopsy (EMB) (collagen volume fraction, CVF). Both LGE and elevated blood PICP levels, but neither PIIINP nor CVF predicted a worse outcome defined as death, heart transplantation, heart failure hospitalization, or life-threatening arrhythmias, after adjusting for known clinical predictors [adjusted hazard ratios: LGE 3.54, 95% confidence interval (CI) 1.90-6.60; P < 0.001 and PICP 1.02, 95% CI 1.01-1.03; P = 0.001]. The combination of LGE and PICP provided the highest prognostic benefit in prediction (likelihood ratio test P = 0.007) and reclassification (net reclassification index: 0.28, P = 0.02; and integrated discrimination improvement index: 0.139, P = 0.01) when added to the clinical prediction model. Moreover, patients with a combination of LGE and elevated PICP (LGE+/PICP+) had the worst prognosis (log-rank P < 0.001). RNA-sequencing and gene enrichment analysis of EMB showed an increased expression of pro-fibrotic and pro-inflammatory pathways in patients with high levels of fibrosis (LGE+/PICP+) compared to patients with low levels of fibrosis (LGE-/PICP-). This would suggest the validity of myocardial fibrosis detection by LGE and PICP, as the subsequent generated fibrotic risk profiles are associated with distinct cardiac transcriptomic profiles. CONCLUSION: The combination of myocardial fibrosis at CMR and circulating PICP levels provides additive prognostic value accompanied by a pro-fibrotic and pro-inflammatory transcriptomic profile in DCM patients with LGE and elevated PICP.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/patologia , Colágeno Tipo I , Meios de Contraste , Fibrose , Gadolínio , Insuficiência Cardíaca/patologia , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Modelos Estatísticos , Miocárdio/patologia , Valor Preditivo dos Testes , Prognóstico
16.
Circ Arrhythm Electrophysiol ; 13(11): e008727, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32997547

RESUMO

BACKGROUND: Cardiac resynchronization therapy (CRT) is an established therapy in patients with dilated cardiomyopathy (DCM) and conduction disorders. Still, one-third of the patients with DCM do not respond to CRT. This study aims to depict the underlying cardiac pathophysiological processes of nonresponse to CRT in patients with DCM using endomyocardial biopsies. METHODS: Within the Maastricht and Innsbruck registries of patients with DCM, 99 patients underwent endomyocardial biopsies before CRT implantation, with histological quantification of fibrosis and inflammation, where inflammation was defined as >14 infiltrating cells/mm2. Echocardiographic left ventricular end-systolic volume reduction ≥15% after 6 months was defined as response to CRT. RNA was isolated from cardiac biopsies of a representative subset of responders and nonresponders. RESULTS: Sixty-seven patients responded (68%), whereas 32 (32%) did not respond to CRT. Cardiac inflammation before implantation was negatively associated with response to CRT (25% of responders, 47% of nonresponders; odds ratio 0.3 [0.12-0.76]; P=0.01). Endomyocardial biopsies fibrosis did not relate to CRT response. Cardiac inflammation improved the robustness of prediction beyond well-known clinical predictors of CRT response (likelihood ratio test P<0.001). Cardiac transcriptomic profiling of endomyocardial biopsies reveals a strong proinflammatory and profibrotic signature in the hearts of nonresponders compared with responders. In particular, COL1A1, COL1A2, COL3A1, COL5A1, POSTN, CTGF, LOX, TGFß1, PDGFRA, TNC, BGN, and TSP2 were significantly higher expressed in the hearts of nonresponders. CONCLUSIONS: Cardiac inflammation along with a transcriptomic profile of high expression of combined proinflammatory and profibrotic genes are associated with a poor response to CRT in patients with DCM.


Assuntos
Arritmias Cardíacas/terapia , Terapia de Ressincronização Cardíaca , Cardiomiopatia Dilatada/fisiopatologia , Insuficiência Cardíaca/terapia , Miocardite/fisiopatologia , Adulto , Idoso , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Áustria , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Feminino , Fibrose , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/genética , Miocardite/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Países Baixos , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Transcriptoma , Falha de Tratamento
17.
Cancers (Basel) ; 11(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212861

RESUMO

Uveal melanoma (UM) is the most frequently found primary intra-ocular tumor in adults. It is a highly aggressive cancer that causes metastasis-related mortality in up to half of the patients. Many independent studies have reported somatic genetic changes associated with high metastatic risk, such as monosomy of chromosome 3 and mutations in BAP1. Still, the mechanisms that drive metastatic spread are largely unknown. This study aimed to elucidate the potential role of microRNAs in the metastasis of UM. Using a next-generation sequencing approach in 26 UM samples we identified thirteen differentially expressed microRNAs between high-risk UM and low/intermediate-risk UM, including the known oncomirs microRNA-17-5p, microRNA-21-5p, and miR-151a-3p. Integration of the differentially expressed microRNAs with expression data of predicted target genes revealed 106 genes likely to be affected by aberrant microRNA expression. These genes were involved in pathways such as cell cycle regulation, EGF signaling and EIF2 signaling. Our findings demonstrate that aberrant microRNA expression in UM may affect the expression of genes in a variety of cancer-related pathways. This implies that some microRNAs can be responsible for UM metastasis and are promising potential targets for future treatment.

18.
Sci Rep ; 8(1): 11922, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093686

RESUMO

Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.


Assuntos
Nefropatias Diabéticas/genética , Retinopatia Diabética/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Hipertensão/genética , Obesidade/genética , Animais , Glicemia/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Retinopatia Diabética/metabolismo , Hipertensão/metabolismo , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Ratos , Retina/metabolismo , Retina/patologia
19.
Cell Rep ; 15(9): 1866-75, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210754

RESUMO

The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD.


Assuntos
Envelhecimento/patologia , Reparo do DNA , Doença de Parkinson/patologia , Animais , Corpo Estriado/patologia , Corpo Estriado/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/ultraestrutura , Endonucleases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos
20.
Genom Data ; 5: 381-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484291

RESUMO

Standard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specific method to determine the expression of small and large RNAs from ribosomal RNA-depleted total RNA in a single sequence run. RNAome sequencing quantitatively preserves all RNA classes. This characteristic allows comparisons between RNA classes, thereby facilitating relationships between different RNA classes. Here, we describe in detail the experimental procedure associated with RNAome sequencing published by Derks and colleagues in RNA Biology (2015) [1]. We also provide the R code for the developed Total Rna Analysis Pipeline (TRAP), an algorithm to analyze RNAome sequencing datasets (deposited at the Gene Expression Omnibus data repository, accession number GSE48084).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa