Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(3): 509-528, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Acta Neuropathol ; 145(6): 793-814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000196

RESUMO

Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported. Using genome-wide linkage analysis and whole exome sequencing in an extended five-generation family with an autosomal dominant rimmed vacuole myopathy, we identified a conclusively linked frameshift mutation in TDP-43 producing a C-terminally altered PrLD (TDP-43p.Trp385IlefsTer10) (maximum multipoint LOD-score 3.61). Patient-derived muscle biopsies showed TDP-43-positive sarcoplasmic inclusions, accumulation of autophagosomes and transcriptomes with abnormally spliced sarcomeric genes (including TTN and NEB) and increased expression of muscle regeneration genes. In vitro phase separation assays demonstrated that TDP-43Trp385IlefsTer10 does not form liquid-like condensates and readily forms solid-like fibrils indicating increased aggregation propensity compared to wild-type TDP-43. In Drosophila TDP-43p.Trp385IlefsTer10 behaved as a partial loss-of-function allele as it was able to rescue the TBPH (fly ortholog of TARDBP) neurodevelopmental lethal null phenotype while showing strongly reduced toxic gain-of-function properties upon overexpression. Accordingly, TDP-43p.Trp385IlefsTer10 showed reduced toxicity in a primary rat neuron disease model. Together, these genetic, pathological, in vitro and in vivo results demonstrate that TDP-43p.Trp385IlefsTer10 is an aggregation-prone partial loss-of-function variant that causes autosomal dominant vacuolar myopathy but not ALS/FTD. Our study genetically links TDP-43 proteinopathy to myodegeneration, and reveals a tissue-specific role of the PrLD in directing pathology.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Animais , Ratos , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação da Fase de Leitura , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação , Humanos
3.
Neurobiol Dis ; 156: 105421, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34118419

RESUMO

Neurodegenerative disorders like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are pathologically characterized by toxic protein deposition in the cytoplasm or nucleus of affected neurons and glial cells. Many of these aggregated proteins belong to the class of RNA binding proteins (RBP), and, when mutated, account for a significant subset of familial ALS and FTD cases. Here, we present first genetic evidence for the RBP gene RBM45 in the FTD-ALS spectrum. RBM45 shows many parallels with other FTD-ALS associated genes and proteins. Multiple lines of evidence have demonstrated that RBM45 is an RBP that, upon mutation, redistributes to the cytoplasm where it co-aggregates with other RBPs into cytoplasmic stress granules (SG), evolving to persistent toxic TDP-43 immunoreactive inclusions. Exome sequencing in two affected first cousins of a heavily affected early-onset dementia family listed a number of candidate genes. The gene with the highest pathogenicity score was the RBP gene RBM45. In the family, the RBM45 Arg183* nonsense mutation co-segregated in both affected cousins. Validation in an unrelated patient (n = 548) / control (n = 734) cohort identified an additional RBM45 Arg183* carrier with bvFTD on a shared 4 Mb haplotype. Transcript and protein expression analysis demonstrated loss of nuclear RBM45, suggestive of a loss-of-function disease mechanism. Further, two more ultra-rare VUS, one in the nuclear localization signal (NLS, p.Lys456Arg) in an ALS patient and one in the intrinsically disordered homo-oligomer assembly (HOA) domain (p.Arg314Gln) in a patient with nfvPPA were detected. Our findings suggest that the pathomechanisms linking RBM45 with FTD and ALS may be related to its loss of nuclear function as a mediator of mRNA splicing, cytoplasmic retention or its inability to form homo-oligomers, leading to aggregate formation with trapping of other RBPs including TDP-43, which may accumulate into persisted TDP-43 inclusions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Sequenciamento do Exoma/métodos , Demência Frontotemporal/genética , Estudos de Associação Genética/métodos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Bélgica/epidemiologia , Estudos de Coortes , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
4.
Am J Hum Genet ; 103(2): 245-260, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057031

RESUMO

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.

5.
Hum Mutat ; 38(3): 297-309, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008748

RESUMO

We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Proteínas Serina-Treonina Quinases/genética , População Branca/genética , Idoso , Alelos , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Ativação Enzimática , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/epidemiologia , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , NF-kappa B/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Deleção de Sequência
7.
Epilepsia ; 57(6): 994-1003, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173016

RESUMO

OBJECTIVE: The discovery of mutations in DEPDC5 in familial focal epilepsies has introduced a novel pathomechanism to a field so far dominated by ion channelopathies. DEPDC5 is part of a complex named GAP activity toward RAGs (GATOR) complex 1 (GATOR1), together with the proteins NPRL2 and NPRL3, and acts to inhibit the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway. GATOR1 is in turn inhibited by the GATOR2 complex. The mTORC1 pathway is a major signaling cascade regulating cell growth, proliferation, and migration. We aimed to study the contribution of GATOR complex genes to the etiology of focal epilepsies and to describe the associated phenotypical spectrum. METHODS: We performed targeted sequencing of the genes encoding the components of the GATOR1 (DEPDC5, NPRL2, and NPRL3) and GATOR2 (MIOS, SEC13, SEH1L, WDR24, and WDR59) complex in 93 European probands with focal epilepsy with or without focal cortical dysplasia. Phospho-S6 immunoreactivity was used as evidence of mTORC1 pathway activation in resected brain tissue of patients carrying pathogenic variants. RESULTS: We identified four pathogenic variants in DEPDC5, two in NPRL2, and one in NPRL3. We showed hyperactivation of the mTORC1 pathway in brain tissue from patients with NPRL2 and NPRL3 mutations. Collectively, inactivating mutations in GATOR1 complex genes explained 11% of cases of focal epilepsy, whereas no pathogenic mutations were found in GATOR2 complex genes. GATOR1-related focal epilepsies differ clinically from focal epilepsies due to mutations in ion channel genes by their association with focal cortical dysplasia and seizures emerging from variable foci, and might confer an increased risk of sudden unexplained death in epilepsy (SUDEP). SIGNIFICANCE: GATOR1 complex gene mutations leading to mTORC1 pathway upregulation is an important cause of focal epilepsy with cortical malformations and represents a potential target for novel therapeutic approaches.


Assuntos
Epilepsias Parciais/genética , Saúde da Família , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Serina-Treonina Quinases TOR/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Epilepsias Parciais/diagnóstico por imagem , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
8.
Hum Mol Genet ; 22(8): 1539-57, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23307927

RESUMO

Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Degeneração Neural/genética , Envelhecimento , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Larva , Degeneração Neural/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Transmissão Sináptica/genética
9.
Acta Neuropathol ; 128(3): 397-410, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899140

RESUMO

Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency <0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency <0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Degeneração Lobar Frontotemporal/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica , Animais , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Europa (Continente) , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Cooperação Internacional , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Proteína Sequestossoma-1
10.
J Neurol ; 271(1): 263-273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689591

RESUMO

Inherited prion diseases caused by two- to twelve-octapeptide repeat insertions (OPRIs) in the prion protein gene (PRNP) show significant clinical heterogeneity. This study describes a family with two new cases with a 4-OPRI mutation and two asymptomatic mutation carriers. The pooled analysis summarizes all cases reported in the literature to date and describes the relation between survival, age of onset, number of OPRI and codon 129 polymorphism. MEDLINE and Google Scholar were queried from database inception up to December 31, 2022. Age of onset was compared per number of OPRI and per codon 129 polymorphism using the Kruskal-Wallis and Wilcoxon-Mann-Whitney tests, respectively. Disease duration was modeled non-parametrically by a Kaplan-Meier model and semi-parametrically by a Cox model. This study comprised 164 patients. Lower number of OPRI and presence of valine (cis-V) versus methionine (cis-M) on codon 129 were associated with an older age of onset (P < 0.001 and P = 0.025, respectively) and shorter disease duration (P < 0.001 and P = 0.003, respectively). Within patients with 5- or more OPRI codon cis-V remained significantly associated with a shorter disease duration. Codon 129 homozygosity versus heterozygosity was not significantly associated with age of onset or disease duration (P = 0.076 and P = 0.409, respectively). This study summarized the largest cohort of patients with two- to twelve-OPRI to date. Lower number of OPRI and codon 129 cis-V is associated with an older age of onset and shorter disease duration, while homozygosity or heterozygosity on codon 129 was not.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mutação , Códon/genética
11.
Neurol Genet ; 9(3): e200071, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37152446

RESUMO

Background and Objectives: Owing to their extensive clinical and molecular heterogeneity, hereditary neurologic diseases in adults are difficult to diagnose. The current knowledge about the diagnostic yield and clinical utility of exome sequencing (ES) for neurologic diseases in adults is limited. This observational study assesses the diagnostic value of ES and multigene panel analysis in adult-onset neurologic disorders. Methods: From January 2019 through April 2022, ES-based multigene panel testing was conducted in 1,411 patients with molecularly unexplained neurologic phenotypes at the Ghent University Hospital. Gene panels were developed for ataxia and spasticity, leukoencephalopathy, movement disorders, paroxysmal episodic disorders, neurodegeneration with brain iron accumulation, progressive myoclonic epilepsy, and amyotrophic lateral sclerosis. Single nucleotide variants, small indels, and copy number variants were analyzed. Across all panels, our analysis covered a total of 725 genes associated with Mendelian inheritance. Results: A molecular diagnosis was established in 10% of the cases (144 of 1,411) representing 71 different monogenic disorders. The diagnostic yield depended significantly on the presenting phenotype with the highest yield seen in patients with ataxia or spastic paraparesis (19%). Most of the established diagnoses comprised disorders with an autosomal dominant inheritance (62%), and the most frequently mutated genes were NOTCH3 (13 patients), SPG7 (11 patients), and RFC1 (8 patients). 34% of the disease-causing variants were novel, including a unique likely pathogenic variant in APP (Ghent mutation, p.[Asn698Asp]) in a family presenting with stroke and severe cerebral white matter disease. 7% of the pathogenic variants comprised copy number variants detected in the ES data and confirmed by an independent technique. Discussion: ES and multigene panel testing is a powerful and efficient tool to diagnose patients with unexplained, adult-onset neurologic disorders.

12.
Prog Neurobiol ; 223: 102386, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481386

RESUMO

Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Fase S , Fosforilação , Estresse Oxidativo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo
13.
Nat Genet ; 55(11): 1929-1940, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919452

RESUMO

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.


Assuntos
Lipodistrofia , PPAR gama , Humanos , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Adipócitos , Adipogenia/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Fosfolipases
14.
Nature ; 442(7105): 920-4, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16862115

RESUMO

Frontotemporal dementia (FTD) with ubiquitin-immunoreactive neuronal inclusions (both cytoplasmic and nuclear) of unknown nature has been linked to a chromosome 17q21 region (FTDU-17) containing MAPT (microtubule-associated protein tau). FTDU-17 patients have consistently been shown to lack a tau-immunoreactive pathology, a feature characteristic of FTD with parkinsonism linked to mutations in MAPT (FTDP-17). Furthermore, in FTDU-17 patients, mutations in MAPT and genomic rearrangements in the MAPT region have been excluded by both genomic sequencing and fluorescence in situ hybridization on mechanically stretched chromosomes. Here we demonstrate that FTDU-17 is caused by mutations in the gene coding for progranulin (PGRN), a growth factor involved in multiple physiological and pathological processes including tumorigenesis. Besides the production of truncated PGRN proteins due to premature stop codons, we identified a mutation within the splice donor site of intron 0 (IVS0 + 5G > C), indicating loss of the mutant transcript by nuclear degradation. The finding was made within an extensively documented Belgian FTDU-17 founder family. Transcript and protein analyses confirmed the absence of the mutant allele and a reduction in the expression of PGRN. We also identified a mutation (c.3G > A) in the Met1 translation initiation codon, indicating loss of PGRN due to lack of translation of the mutant allele. Our data provide evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. Furthermore, in a Belgian series of familial FTD patients, PGRN mutations were 3.5 times more frequent than mutations in MAPT, underscoring a principal involvement of PGRN in FTD pathogenesis.


Assuntos
Cromossomos Humanos Par 17/genética , Demência/genética , Lobo Frontal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Mutação/genética , Lobo Temporal/fisiopatologia , Ubiquitina/metabolismo , Bélgica , Análise Mutacional de DNA , Demência/fisiopatologia , Lobo Frontal/metabolismo , Ligação Genética/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mapeamento Físico do Cromossomo , Progranulinas , Sítios de Splice de RNA/genética , Lobo Temporal/metabolismo
15.
Trends Mol Med ; 28(11): 939-950, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115805

RESUMO

Moyamoya disease (MMD) is a rare cerebrovascular disorder with unknown etiology. MMD is characterized by progressive narrowing of arteries of the brain and the formation of a compensatory network of fragile vessels. Genetic studies have identified RNF213, also known as mysterin, as a susceptibility gene for MMD, but the low penetrance in genetically susceptible individuals suggests that a second hit is necessary to trigger disease onset. Recently, several molecular studies uncovered RNF213 as a key antimicrobial protein with important functions in the immune system. In addition, an increasing number of clinical reports describe the development of moyamoya angiopathy (MMA) associated with infection or autoimmune disorders. Together, this growing body of molecular and clinical evidence points towards immune-related responses as second hits to trigger MMD onset.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Predisposição Genética para Doença , Fatores de Transcrição/genética
16.
Front Neurosci ; 16: 815765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185458

RESUMO

TAR DNA-binding protein 43, mostly referred to as TDP-43 (encoded by the TARDBP gene) is strongly linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). From the identification of TDP-43 positive aggregates in the brains and spinal cords of ALS/FTD patients, to a genetic link between TARBDP mutations and the development of TDP-43 pathology in ALS, there is strong evidence indicating that TDP-43 plays a pivotal role in the process of neuronal degeneration. What this role is, however, remains to be determined with evidence ranging from gain of toxic properties through the formation of cytotoxic aggregates, to an inability to perform its normal functions due to nuclear depletion. To add to an already complex subject, recent studies highlight a role for TDP-43 in muscle physiology and disease. We here review the biophysical, biochemical, cellular and tissue-specific properties of TDP-43 in the context of neurodegeneration and have a look at the nascent stream of evidence that positions TDP-43 in a myogenic context. By integrating the neurogenic and myogenic pathological roles of TDP-43 we provide a more comprehensive and encompassing view of the role and mechanisms associated with TDP-43 across the various cell types of the motor system, all the way from brain to limbs.

17.
Orphanet J Rare Dis ; 17(1): 210, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606766

RESUMO

BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Exoma , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma
18.
Acta Neuropathol Commun ; 10(1): 4, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998435

RESUMO

The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer's disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.


Assuntos
Doença de Alzheimer/genética , Proteínas de Drosophila/genética , Endossomos/genética , Degeneração Neural/genética , Neurônios/patologia , Fatores de Transcrição/genética , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster , Endossomos/metabolismo , Endossomos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo
19.
Acta Neurol Belg ; 121(1): 23-35, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32335870

RESUMO

Central hypoventilation in adult patients is a rare life-threatening condition characterised by the loss of automatic breathing, more pronounced during sleep. In most cases, it is secondary to a brainstem lesion or to a primary pulmonary, cardiac or neuromuscular disease. More rarely, it can be a manifestation of congenital central hypoventilation syndrome (CCHS). We here describe a 25-year-old woman with severe central hypoventilation triggered by analgesics. Genetic analysis confirmed the diagnosis of adult-onset CCHS caused by a heterozygous de novo poly-alanine repeat expansion of the PHOX2B gene. She was treated with nocturnal non-invasive ventilation. We reviewed the literature and found 21 genetically confirmed adult-onset CCHS cases. Because of the risk of deleterious respiratory complications, adult-onset CCHS is an important differential diagnosis in patients with central hypoventilation.


Assuntos
Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Mutação/genética , Apneia do Sono Tipo Central/diagnóstico por imagem , Apneia do Sono Tipo Central/genética , Fatores de Transcrição/genética , Adulto , Idade de Início , Feminino , Humanos , Hipoventilação/diagnóstico por imagem , Hipoventilação/genética
20.
Front Cell Infect Microbiol ; 11: 735416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804992

RESUMO

RNF213 is a large, poorly characterized interferon-induced protein. Mutations in RNF213 are associated with predisposition for Moyamoya disease (MMD), a rare cerebrovascular disorder. Recently, RNF213 was found to have broad antimicrobial activity in vitro and in vivo, yet the molecular mechanisms behind this function remain unclear. Using mass spectrometry-based proteomics and validation by real-time PCR we report here that knockdown of RNF213 leads to transcriptional upregulation of MVP and downregulation of CYR61, in line with reported pro- and anti-bacterial activities of these proteins. Knockdown of RNF213 also results in downregulation of DDAH1, which we discover to exert antimicrobial activity against Listeria monocytogenes infection. DDAH1 regulates production of nitric oxide (NO), a molecule with both vascular and antimicrobial effects. We show that NO production is reduced in macrophages from RNF213 KO mice, suggesting that RNF213 controls Listeria infection through regulation of DDAH1 transcription and production of NO. Our findings propose a potential mechanism for the antilisterial activity of RNF213 and highlight NO as a potential link between RNF213-mediated immune responses and the development of MMD.


Assuntos
Doença de Moyamoya , Óxido Nítrico , Adenosina Trifosfatases/genética , Animais , Predisposição Genética para Doença , Camundongos , Proteoma , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa