Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178121

RESUMO

Differentiation of stem cells in the plant apex gives rise to aerial tissues and organs. Presently, we lack a lineage map of the shoot apex cells in woody perennials - a crucial gap considering their role in determining primary and secondary growth. Here, we used single-nuclei RNA-sequencing to determine cell type-specific transcriptomes of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of the epidermis, leaf mesophyll and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we applied a pipeline for interspecific single-cell gene expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the principles underlying cell division and differentiation conserved between herbaceous and perennial species while also allowing us to examine species-specific differences at single-cell resolution.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , RNA/metabolismo , Transcriptoma/genética , Xilema/metabolismo
2.
Genome Res ; 30(8): 1131-1143, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817237

RESUMO

Despite the growing resources and tools for high-throughput characterization and analysis of genomic information, the discovery of the genetic elements that regulate complex traits remains a challenge. Systems genetics is an emerging field that aims to understand the flow of biological information that underlies complex traits from genotype to phenotype. In this study, we used a systems genetics approach to identify and evaluate regulators of the lignin biosynthesis pathway in Populus deltoides by combining genome, transcriptome, and phenotype data from a population of 268 unrelated individuals of P. deltoides The discovery of lignin regulators began with the quantitative genetic analysis of the xylem transcriptome and resulted in the detection of 6706 and 4628 significant local- and distant-eQTL associations, respectively. Among the locally regulated genes, we identified the R2R3-MYB transcription factor MYB125 (Potri.003G114100) as a putative trans-regulator of the majority of genes in the lignin biosynthesis pathway. The expression of MYB125 in a diverse population positively correlated with lignin content. Furthermore, overexpression of MYB125 in transgenic poplar resulted in increased lignin content, as well as altered expression of genes in the lignin biosynthesis pathway. Altogether, our findings indicate that MYB125 is involved in the control of a transcriptional coexpression network of lignin biosynthesis genes during secondary cell wall formation in P. deltoides.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lignina/biossíntese , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta/genética , Lignina/genética , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma/genética , Xilema/genética
3.
Plant Physiol ; 188(1): 560-575, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34599592

RESUMO

Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.


Assuntos
Alquil e Aril Transferases/metabolismo , Citocininas/genética , Citocininas/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Organogênese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia
4.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
5.
BMC Biol ; 20(1): 252, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352404

RESUMO

BACKGROUND: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules. RESULTS: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia. CONCLUSIONS: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/fisiologia
6.
New Phytol ; 234(2): 634-649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092309

RESUMO

Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Regulação da Expressão Gênica de Plantas , Genômica , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
7.
New Phytol ; 213(2): 799-811, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27596807

RESUMO

Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. These polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.


Assuntos
Metabolismo Energético/genética , Estudo de Associação Genômica Ampla , Populus/genética , Característica Quantitativa Herdável , Sequência de Aminoácidos , Genes de Plantas , Loci Gênicos , Marcadores Genéticos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
8.
Plant Cell Environ ; 40(10): 2236-2249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707409

RESUMO

Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.


Assuntos
Temperatura Baixa , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Populus/enzimologia , Populus/fisiologia , Desmetilação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Populus/genética
9.
Plant Cell Environ ; 40(11): 2806-2819, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28810288

RESUMO

The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.


Assuntos
Meristema/enzimologia , Meristema/crescimento & desenvolvimento , Oxirredutases O-Desmetilantes/metabolismo , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Domínio Catalítico , Temperatura Baixa , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Flavonoides/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hippocastanaceae/enzimologia , Hippocastanaceae/genética , Hippocastanaceae/crescimento & desenvolvimento , Meristema/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Estações do Ano
10.
BMC Plant Biol ; 16: 66, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983547

RESUMO

BACKGROUND: Adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. RESULTS: Parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7-10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. CONCLUSIONS: This study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp pathway flux appears to be directed to the synthesis of indole glucosinolates (IG), as suggested by the over-expression of SUR2. Individuals that are efficient in AR formation may utilize alternative (non-Trp) pathways to synthesize IAA, based on the observation that they down-regulate the expression of TSA1, one of the critical steps in the synthesis of tryptophan.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Populus/genética , Alelos , Sítios de Ligação , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Populus/crescimento & desenvolvimento , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo
11.
BMC Plant Biol ; 15: 166, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26122556

RESUMO

BACKGROUND: Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree to identify genetic factors controlling leaf shape. The approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis. RESULTS: A major QTL for leaf lamina width and length:width ratio was identified in multiple experiments that confirmed its stability. A transcriptome analysis of expanding leaf tissue contrasted gene expression between individuals with alternative QTL alleles, and identified an ADP-ribosylation factor (ARF) GTPase (PtARF1) as a candidate gene for regulating leaf morphology in this pedigree. ARF GTPases are critical elements in the vesicular trafficking machinery. Disruption of the vesicular trafficking function of ARF by the pharmacological agent Brefeldin A (BFA) altered leaf lateral growth in the narrow-leaf P. trichocarpa suggesting a molecular mechanism of leaf shape determination. Inhibition of the vesicular trafficking processes by BFA interferes with cycling of PIN proteins and causes their accumulation in intercellular compartments abolishing polar localization and disrupting normal auxin flux with potential effects on leaf expansion. CONCLUSIONS: In other model systems, ARF proteins have been shown to control the localization of auxin efflux carriers, which function to establish auxin gradients and apical-basal cell polarity in developing plant organs. Our results support a model where PtARF1 transcript abundance changes the dynamics of endocytosis-mediated PIN localization in leaf cells, thus affecting lateral auxin flux and subsequently lamina leaf expansion. This suggests that evolution of differential cellular polarity plays a significant role in leaf morphological variation observed in subgenera of genus Populus.


Assuntos
Fatores de Ribosilação do ADP/genética , GTP Fosfo-Hidrolases/genética , Folhas de Planta/anatomia & histologia , Populus/genética , Locos de Características Quantitativas , Fatores de Ribosilação do ADP/metabolismo , Brefeldina A/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Hibridização Genética , Folhas de Planta/genética , Populus/anatomia & histologia , Transcriptoma
12.
BMC Genom Data ; 25(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166621

RESUMO

OBJECTIVES: Escallonia (Escalloniaceae) belongs to the Escalloniales, a diverse clade of flowering plants with unclear placement in the tree of life. Escallonia species show impressive morphological and ecological diversity and are widely distributed across three hotspots of biodiversity in the Neotropics. To shed light on the genomic substrate of this radiation and the phylogenetic placement of Escalloniales as well as to generate useful data for comparative evolutionary genomics across flowering plants, we produced and annotated draft genomes for two species of Escallonia. DATA DESCRIPTION: Genomic DNA from E. rubra and E. herrerae was sequenced with Oxford Nanopore sequencing chemistry, generating 3.4 and 12 million sequence reads with an average read length of 9.4 and 9.1 Kb (approximately 31 and 111 Gb of sequence data), respectively. In addition, we generated Illumina 100-bp paired-end short read data for E. rubra (approximately 75 Gb of sequence data). The Escallonia rubra genome was 566 Mb, with 3,233 contigs and an N50 of 285 Kb. The assembled genome for E. herrerae was 994 Mp, with 5,760 contigs and an N50 of 317 Kb. The genome sequences were annotated with 31,038 (E. rubra) and 47,905 (E. herrerea) protein-coding gene models supported by transcriptome/protein evidence and/or Pfam domain content. BUSCO assessments indicated completeness levels of approximately 98% for the genome assemblies and 88% for the genome annotations.


Assuntos
Genômica , Magnoliopsida , Filogenia , Genoma , Transcriptoma , Magnoliopsida/genética
13.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
14.
Proc Natl Acad Sci U S A ; 107(18): 8492-7, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404162

RESUMO

A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Populus/genética , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Raízes de Plantas/genética , Locos de Características Quantitativas , Xilema/genética
15.
Tree Physiol ; 41(11): 2216-2227, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960379

RESUMO

Although the CRISPR/Cas9 system has been successfully used for crop breeding, its application remains limited in forest trees. Here, we describe an efficient gene editing strategy for hybrid poplar, (Populus tremula × alba INRA clone 717-1B4) based on the Golden Gate MoClo cloning. To test the system efficiency for generating single gene mutants, two single guide RNAs (sgRNAs) were designed and incorporated into the MoClo Tool Kit level 2 binary vector with the Cas9 expression cassette to mutate the SHORT ROOT (SHR) gene. Moreover, we also tested its efficiency for introducing mutations in two genes simultaneously by expressing one sgRNA targeting a single site of the YUC4 gene and the other sgRNA targeting the PLT1 gene. For a robust evaluation of the approach, we repeated the strategy to target the LBD12 and LBD4 genes simultaneously, using an independent construct. We generated hairy roots by Agrobacterium rhizogenes-mediated leaf transformation. Sequencing results confirmed the CRISPR/Cas9-mediated mutation in the targeted sites of PtaSHR. Biallelic and homozygous knockout mutations were detected. A deletion spanning both target sites and small insertions/deletions were the most common mutations. Out of the 22 SHR alleles sequenced, 21 were mutated. The phenotype's characterization showed that transgenic roots with biallelic mutations for the SHR gene lacked a defined endodermal single cell layer, suggesting a conserved gene function similar to its homolog in Arabidopsis Arabidopsis thaliana (L.) Heynh. Sequencing results also revealed the high efficiency of the system for generating double mutants. Biallelic mutations for both genes in the yuc4/plt1 and lbd12/lbd4 roots were detected in three (yuc4/plt1) and two (lbd12/lbd4) out of four transgenic roots evaluated. A small deletion or a single nucleotide insertion at the single target site was the most common mutations. This CRISPR/Cas9 strategy arises as a rapid, simple and standardized gene-editing tool to evaluate the gene role in essential developmental programs such as radial cell differentiation of poplar roots.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Populus/genética , RNA Guia de Cinetoplastídeos/genética
16.
Appl Plant Sci ; 9(3): e11413, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33854847

RESUMO

PREMISE: Commonly used molecular techniques such as next-generation sequencing require reliable methods to extract DNA quickly and efficiently. Secondary compounds within plant tissues make this requirement all the more challenging, often forcing researchers to test different extraction methods tailored to their particular species of interest in order to obtain large amounts of high-quality genomic DNA. The opportunities provided by high-throughput, next-generation sequencing only exacerbate these problems, especially when trying to extract DNA from multiple species at the same time. Several methods have attempted to resolve the challenges of obtaining suitable DNA from plants; however, a rapid, high-yield, high-quality, and highly scalable DNA extraction method is still needed. METHODS AND RESULTS: We present a rapid DNA extraction protocol that utilizes a buffer with relatively large amounts of cetyltrimethylammonium bromide (CTAB) and sodium chloride, combined with a silica maxi-column cleanup of the extracted DNA. The new method is easy to implement using standard equipment and inexpensive reagents. The entire procedure (from grinding to the final elution) can be completed in less than two hours for a single sample and can be easily scaled to meet desired research goals. It works on diverse green plants with highly varied secondary chemistries (e.g., ferns, gymnosperms, and phylogenetically divergent angiosperms). CONCLUSIONS: Application of the protocol to various plant species yielded DNA of high quality in less than two hours and can be adjusted to extract DNA at large (maxi-preps) or small (96-well minipreps) scales. We anticipate that our method will be of wide utility for rapidly isolating large quantities of quality genomic DNA from diverse plant species and will have broad applications in phylogenetic studies utilizing PCR and short-read DNA sequencing.

17.
PLoS One ; 16(5): e0251149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974645

RESUMO

Single-cell transcriptome analysis has been extensively applied in humans and animal models to uncover gene expression heterogeneity between the different cell types of a tissue or an organ. It demonstrated its capability to discover key regulatory elements that determine cell fate during developmental programs. Single-cell analysis requires the isolation and labeling of the messenger RNA (mRNA) derived from each cell. These challenges were primarily addressed in mammals by developing microfluidic-based approaches. For plant species whose cells contain cell walls, these approaches have generally required the generation of isolated protoplasts. Many plant tissues' secondary cell wall hinders enzymatic digestion required for individual protoplast isolation, resulting in an unequal representation of cell types in a protoplast population. This limitation is especially critical for cell types located in the inner layers of a tissue or the inner tissues of an organ. Consequently, single-cell RNA sequencing (scRNA-seq) studies using microfluidic approaches in plants have mainly been restricted to Arabidopsis roots, for which well-established procedures of protoplast isolation are available. Here we present a simple alternative approach to generating high-quality protoplasts from plant tissue by characterizing the mRNA extracted from individual nuclei instead of whole cells. We developed the protocol using two different plant materials with varying cellular complexity levels and cell wall structure, Populus shoot apices, and more lignified stems. Using the 10× Genomics Chromium technology, we show that this procedure results in intact mRNA isolation and limited leakage, with a broad representation of individual cell transcriptomes.


Assuntos
Fracionamento Celular/métodos , Populus/genética , RNA de Plantas , Análise de Sequência de RNA , Perfilação da Expressão Gênica/métodos , Protoplastos , Reprodutibilidade dos Testes , Análise de Célula Única
18.
Planta ; 232(1): 51-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20361336

RESUMO

Covalent attachment of the small ubiquitin-like modifier (SUMO) to proteins in eukaryotic cells can regulate an assortment of cellular processes including transcription, and DNA-protein and protein-protein interactions. We identified gene models and found evidence for expression of genes involved in SUMOylation and SUMO deconjugation in Populus. We detected SUMOylated proteins in diverse organ and tissue types. SUMOylation was altered during responses to heat shock, desiccation, peroxide and irrigation of roots with high salt solution. SUMO deconjugation from substrates was sensitive to cysteine protease inhibitors. Product sizes and sensitivity to inhibitors are consistent with poly-SUMO chain formation as an intermediate step in SUMO redistribution to substrates in plant cells responding to treatments. The SUMOylation pathway is active in Populus and substrate conjugation to SUMO is a rapid response to multiple inducers.


Assuntos
Genoma de Planta , Populus/metabolismo , Ubiquitinas/metabolismo , Western Blotting , Inibidores de Cisteína Proteinase/farmacologia , Populus/genética , Ligação Proteica
19.
Front Plant Sci ; 11: 590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582229

RESUMO

Alternative splicing (AS) is a mechanism of regulation of the proteome via enabling the production of multiple mRNAs from a single gene. To date, the dynamics of AS and its effects on the protein sequences of individuals in a large and genetically unrelated population of trees have not been investigated. Here we describe the diversity of AS events within a previously genotyped population of 268 individuals of Populus deltoides and their putative downstream functional effects. Using a robust bioinformatics pipeline, the AS events and resulting transcript isoforms were discovered and quantified for each individual in the population. Analysis of the AS revealed that, as expected, most AS isoforms are conserved. However, we also identified a substantial collection of new, unannotated splice junctions and transcript isoforms. Heritability estimates for the expression of transcript isoforms showed that approximately half of the isoforms are heritable. The genetic regulators of these AS isoforms and splice junction usage were then identified using a genome-wide association analysis. The expression of AS isoforms was predominately cis regulated while splice junction usage was generally regulated in trans. Additionally, we identified 696 genes encoding alternatively spliced isoforms that changed putative protein domains relative to the longest protein coding isoform of the gene, and 859 genes exhibiting this same phenomenon relative to the most highly expressed isoform. Finally, we found that 748 genes gained or lost micro-RNA binding sites relative to the longest protein coding isoform of a given gene, while 940 gained or lost micro-RNA binding sites relative to the most highly expressed isoform. These results indicate that a significant fraction of AS events are genetically regulated and that this isoform usage can result in protein domain architecture changes.

20.
New Phytol ; 182(4): 878-890, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19291008

RESUMO

The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.


Assuntos
Biomassa , Nitrogênio/farmacologia , Populus/crescimento & desenvolvimento , Populus/genética , Madeira/química , Madeira/genética , Células Clonais , Fertilizantes , Ligação Genética , Espectrometria de Massas , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa