Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(26): 13097-13106, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182610

RESUMO

Stress can either promote or impair learning and memory. Such opposing effects depend on whether synapses persist or decay after learning. Maintenance of new synapses formed at the time of learning upon neuronal network activation depends on the stress hormone-activated glucocorticoid receptor (GR) and neurotrophic factor release. Whether and how concurrent GR and neurotrophin signaling integrate to modulate synaptic plasticity and learning is not fully understood. Here, we show that deletion of the neurotrophin brain-derived neurotrophic factor (BDNF)-dependent GR-phosphorylation (PO4) sites impairs long-term memory retention and maintenance of newly formed postsynaptic dendritic spines in the mouse cortex after motor skills training. Chronic stress and the BDNF polymorphism Val66Met disrupt the BDNF-dependent GR-PO4 pathway necessary for preserving training-induced spines and previously acquired memories. Conversely, enrichment living promotes spine formation but fails to salvage training-related spines in mice lacking BDNF-dependent GR-PO4 sites, suggesting it is essential for spine consolidation and memory retention. Mechanistically, spine maturation and persistence in the motor cortex depend on synaptic mobilization of the glutamate receptor subunit A1 (GluA1) mediated by GR-PO4 Together, these findings indicate that regulation of GR-PO4 via activity-dependent BDNF signaling is important for the formation and maintenance of learning-dependent synapses. They also define a signaling mechanism underlying these effects.


Assuntos
Consolidação da Memória/fisiologia , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glucocorticoides/metabolismo , Homeostase/fisiologia , Humanos , Microscopia Intravital , Masculino , Camundongos , Córtex Motor/diagnóstico por imagem , Fosforilação/fisiologia , Polimorfismo de Nucleotídeo Único , Receptores de AMPA/metabolismo , Receptores de Glucocorticoides/genética , Transdução de Sinais/fisiologia , Sinapses/metabolismo
2.
Gen Comp Endocrinol ; 258: 15-32, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155265

RESUMO

It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Corantes Fluorescentes/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Arginina Vasopressina/metabolismo , Astrócitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipotálamo/metabolismo , Ligantes , Masculino , Neuroanatomia , Neurônios/metabolismo , Hipófise/citologia , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Coloração e Rotulagem , Vasopressinas/metabolismo
3.
J Neurosci ; 36(37): 9558-71, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629708

RESUMO

UNLABELLED: Although we are beginning to understand the late stage of neurodegenerative diseases, the molecular defects associated with the initiation of impaired cognition are poorly characterized. Here, we demonstrate that in the adult brain, the coxsackievirus and adenovirus receptor (CAR) is located on neuron projections, at the presynapse in mature neurons, and on the soma of immature neurons in the hippocampus. In a proinflammatory or diseased environment, CAR is lost from immature neurons in the hippocampus. Strikingly, in hippocampi of patients at early stages of late-onset Alzheimer's disease (AD), CAR levels are significantly reduced. Similarly, in triple-transgenic AD mice, CAR levels in hippocampi are low and further reduced after systemic inflammation. Genetic deletion of CAR from the mouse brain triggers deficits in adult neurogenesis and synapse homeostasis that lead to impaired hippocampal plasticity and cognitive deficits. We propose that post-translational CAR loss of function contributes to cognitive defects in healthy and diseased-primed brains. SIGNIFICANCE STATEMENT: This study addressed the role of the coxsackievirus and adenovirus receptor (CAR), a single-pass cell adhesion molecule, in the adult brain. Our results demonstrate that CAR is expressed by mature neurons throughout the brain. In addition, we propose divergent roles for CAR in immature neurons, during neurogenesis, and at the mature synapse. Notably, CAR loss of function also affects hippocampal plasticity.


Assuntos
Doença de Alzheimer/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/deficiência , Hipocampo/patologia , Neurogênese/genética , Plasticidade Neuronal/genética , Sinapses/metabolismo , Fatores Etários , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Animais , Células Cultivadas , Transtornos Cognitivos/etiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo
4.
Cell Mol Life Sci ; 72(15): 2911-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084873

RESUMO

To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.


Assuntos
Conexinas/metabolismo , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/fisiologia , Animais , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Humanos
5.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38952926

RESUMO

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Assuntos
Modelos Animais de Doenças , Extinção Psicológica , Medo , Camundongos Knockout , Neurônios , Ocitocina , Síndrome de Prader-Willi , Somatostatina , Vasopressinas , Animais , Ocitocina/farmacologia , Somatostatina/farmacologia , Somatostatina/metabolismo , Medo/efeitos dos fármacos , Medo/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Síndrome de Prader-Willi/fisiopatologia , Síndrome de Prader-Willi/tratamento farmacológico , Vasopressinas/metabolismo , Agressão/efeitos dos fármacos , Agressão/fisiologia , Masculino , Comportamento Social , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Optogenética , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas
6.
Biochim Biophys Acta ; 1818(8): 1937-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21839720

RESUMO

The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells. We review here the insights gained since the first description of gap junctions in the adrenal medullary tissue. Adrenal stimulus-secretion coupling now appears far more intricate than was previously envisioned and its deciphering represents a challenge for neurobiologists engaged in the study of the regulation of neuroendocrine secretion. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.


Assuntos
Medula Suprarrenal/metabolismo , Comunicação Celular/fisiologia , Junções Comunicantes/fisiologia , Regulação da Expressão Gênica , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Biofísica/métodos , Catecolaminas/metabolismo , Linhagem Celular Tumoral , Células Cromafins/citologia , Conexinas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Sistemas Neurossecretores , Ratos
7.
Proc Natl Acad Sci U S A ; 107(9): 4465-70, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20160103

RESUMO

Growth hormone (GH) exerts its actions via coordinated pulsatile secretion from a GH cell network into the bloodstream. Practically nothing is known about how the network receives its inputs in vivo and releases hormones into pituitary capillaries to shape GH pulses. Here we have developed in vivo approaches to measure local blood flow, oxygen partial pressure, and cell activity at single-cell resolution in mouse pituitary glands in situ. When secretagogue (GHRH) distribution was modeled with fluorescent markers injected into either the bloodstream or the nearby intercapillary space, a restricted distribution gradient evolved within the pituitary parenchyma. Injection of GHRH led to stimulation of both GH cell network activities and GH secretion, which was temporally associated with increases in blood flow rates and oxygen supply by capillaries, as well as oxygen consumption. Moreover, we observed a time-limiting step for hormone output at the perivascular level; macromolecules injected into the extracellular parenchyma moved rapidly to the perivascular space, but were then cleared more slowly in a size-dependent manner into capillary blood. Our findings suggest that GH pulse generation is not simply a GH cell network response, but is shaped by a tissue microenvironment context involving a functional association between the GH cell network activity and fluid microcirculation.


Assuntos
Hormônio do Crescimento/metabolismo , Microcirculação , Hipófise/irrigação sanguínea , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipófise/citologia , Hipófise/metabolismo
8.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33232306

RESUMO

Intellectual and social disabilities are common comorbidities in adolescents and adults with MAGE family member L2 (MAGEL2) gene deficiency characterizing the Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. The cellular and molecular mechanisms underlying the risk for autism in these syndromes are not understood. We asked whether vasopressin functions are altered by MAGEL2 deficiency and whether a treatment with vasopressin could alleviate the disabilities of social behavior. We used Magel2-knockout mice (adult males) combined with optogenetic or pharmacological tools to characterize disease modifications in the vasopressinergic brain system and monitor its impact on neurophysiological and behavioral functions. We found that the activation of vasopressin neurons and projections in the lateral septum were inappropriate for performing a social habituation/discrimination task. Mechanistically, the lack of vasopressin impeded the deactivation of somatostatin neurons in the lateral septum, which predicted social discrimination deficits. Correction of vasopressin septal content by administration or optogenetic stimulation of projecting axons suppressed the activity of somatostatin neurons and ameliorated social behavior. This preclinical study identified vasopressin in the lateral septum as a key factor in the pathophysiology of Magel2-related neurodevelopmental syndromes.


Assuntos
Antígenos de Neoplasias/genética , Transtorno Autístico , Comportamento Animal , Proteínas/genética , Núcleos Septais , Comportamento Social , Vasopressinas , Animais , Antígenos de Neoplasias/metabolismo , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteínas/metabolismo , Núcleos Septais/metabolismo , Núcleos Septais/fisiopatologia , Vasopressinas/deficiência , Vasopressinas/farmacologia
9.
Cell Mol Neurobiol ; 30(8): 1425-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061165

RESUMO

The adrenal medullary tissue contributes to maintain body homeostasis in reaction to stressful environmental changes via the release of catecholamines into the blood circulation in response to splanchnic nerve activation. Accordingly, chromaffin cell stimulus-secretion coupling undergoes temporally restricted periods of anatomo- functional remodeling in response to prevailing hormonal requirements of the organism. The postnatal development of the adrenal medulla and response to stress are remarkable physiological situations in which the stimulus- secretion coupling is critically affected. Catecholamine secretion from rat chromaffin cells is under a dual control involving an incoming initial command arising from the sympathetic nervous system that releases acetylcholine at the splanchnic nerve terminal-chromaffin cell synapses and a local gap junction-mediated intercellular communication. Interestingly, these two communication pathways are functionally interconnected within the gland and exhibit coordinated plasticity mechanisms. This article reviews the physiological and molecular evidence that the adrenal medullary tissue displays anatomical and functional adaptative remodeling of cell­cell communications upon physiological (postnatal development) and/or physiopathological (stress) situations associated with specific needs in circulating catecholamine levels.


Assuntos
Medula Suprarrenal/citologia , Medula Suprarrenal/crescimento & desenvolvimento , Comunicação Celular , Estresse Fisiológico , Adaptação Fisiológica , Animais , Junções Comunicantes/metabolismo , Humanos , Transmissão Sináptica
10.
Mol Neurobiol ; 40(1): 87-100, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19444654

RESUMO

The current view of stimulation-secretion coupling in adrenal neuroendocrine chromaffin cells holds that catecholamines are released upon transsynaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. However, this traditional vertical scheme would merit to be revisited in the light of recent data. Although electrical discharges invading the splanchnic nerve endings are the major physiological stimulus to trigger catecholamine release in vivo, growing evidence indicates that intercellular chromaffin cell communication mediated by gap junctions represents an additional route by which biological signals (electrical activity, changes in intracellular Ca(2+) concentration,...) propagate between adjacent cells and trigger subsequent catecholamine exocytosis. Accordingly, it has been proposed that gap junctional communication efficiently helps synapses to lead chromaffin cell function and, in particular, hormone secretion. The experimental clues supporting this hypothesis are presented and discussed with regards to both interaction with the excitatory cholinergic synaptic transmission and physiopathology of the adrenal medulla.


Assuntos
Medula Suprarrenal/metabolismo , Comunicação Celular , Junções Comunicantes/fisiologia , Medula Suprarrenal/citologia , Animais , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Humanos , Transmissão Sináptica
12.
Curr Top Behav Neurosci ; 35: 239-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28812269

RESUMO

Oxytocin plays a role in various functions including endocrine and immune functions but also parent-infant bonding and social interactions. It might be considered as a main neuropeptide involved in mediating the regulation of adaptive interactions between an individual and his/her environment. Recently, a critical role of oxytocin in early life has been revealed in sensory processing and multi-modal integration that are essential for normal postnatal neurodevelopment. An early alteration in the oxytocin-system may disturb its maturation and may have short-term and long-term pathological consequences such as autism spectrum disorders. Here, we will synthesize the existing literature on the development of the oxytocin system and its role in the early postnatal life of mammals (from birth to weaning) in a normal or pathological context. Oxytocin is required in critical windows of time that play a pivotal role and that should be considered for therapeutical interventions.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Desenvolvimento Infantil/fisiologia , Relações Interpessoais , Ocitocina/metabolismo , Animais , Humanos , Recém-Nascido , Transdução de Sinais/fisiologia
14.
J Neurosci ; 22(1): 265-73, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11756510

RESUMO

Developing oxytocin and vasopressin (OT/AVP) supraoptic nucleus (SON) neurons positively autocontrol their electrical activity via dendritic release of their respective peptide. The effects of this autocontrol are maximum during the second postnatal week (PW2), when the dendritic arbor transiently increases and glutamatergic postsynaptic potentials appear. Here, we studied the role and interaction of dendritic OT/AVP release and glutamate release in dendritic plasticity and synaptogenesis in SON. In vivo treatment with the peptides antagonists or with an NMDA antagonist suppressed the transient increase in dendritic arbor of SON neurons at the beginning of PW2. Incubation of acute slices with these compounds decreased the dendritic arbor on a short time scale (3-8 hr) in slices of postnatal day 7 (P7) to P9 rats. Conversely, application of OT/AVP or NMDA increased dendritic branches in slices of P3-P6 rats. Their effects were inhibited by blockade of electrical activity, voltage-gated Ca2+ channels, or intracellular Ca2+ mobilization. They were also interdependent because both OT/AVP and NMDA (but not AMPA) receptor activation were required for increasing the dendritic arbor. Part of this interdependence probably results from a retrograde action of the peptides facilitating glutamate release. Finally, blocking OT/AVP receptors by in vivo treatment with the peptides antagonists during development decreased spontaneous glutamatergic synaptic activity recorded in young adults. These results show that an interplay between postsynaptic dendritic peptide release and presynaptic glutamate release is involved in the transient increase in dendritic arbor of SON neurons and indicate that OT/AVP are required for normal synaptogenesis of glutamatergic inputs in SON.


Assuntos
Dendritos/fisiologia , Plasticidade Neuronal/fisiologia , Núcleo Supraóptico/fisiologia , Sinapses/fisiologia , Animais , Arginina Vasopressina/antagonistas & inibidores , Arginina Vasopressina/farmacologia , Cálcio/metabolismo , Dendritos/ultraestrutura , Antagonistas de Aminoácidos Excitatórios/farmacologia , Corantes Fluorescentes , Antagonistas de Hormônios/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Microinjeções , Morfolinas/farmacologia , N-Metilaspartato/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ocitocina/antagonistas & inibidores , Ocitocina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Pirrolidinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/ultraestrutura , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos
15.
Biol Psychiatry ; 78(2): 85-94, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25599930

RESUMO

BACKGROUND: Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. METHODS: We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. RESULTS: Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. CONCLUSIONS: Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism.


Assuntos
Antígenos de Neoplasias/genética , Transtorno Autístico/genética , Ocitocina/administração & dosagem , Síndrome de Prader-Willi/genética , Proteínas/genética , Comportamento Social , Animais , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/psicologia , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Ocitocina/farmacocinética , Ocitocina/uso terapêutico , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/psicologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia
16.
Front Neuroanat ; 8: 164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25767437

RESUMO

Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children. However, the impact of OT on the developing brain and in particular on the embryonic and early postnatal maturation of OT neurons, has been only poorly investigated. In the present review we summarize available (although limited) literature on general features of ontogenetic transformation of the OT system, including determination, migration and differentiation of OT neurons. Next, we discuss trajectories of OT receptors (OTR) in the perinatal period. Furthermore, we provide evidence that early alterations, from birth, in the central OT system lead to severe neurodevelopmental diseases such as feeding deficit in infancy and severe defects in social behavior in adulthood, as described in Prader-Willi syndrome (PWS). Our review intends to propose a hypothesis about developmental dynamics of central OT pathways, which are essential for survival right after birth and for the acquisition of social skills later on. A better understanding of the embryonic and early postnatal maturation of the OT system may lead to better OT-based treatments in PWS or autism.

18.
Nat Commun ; 4: 2938, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356378

RESUMO

Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice. Pharmacological blockade of adrenal gap junctions by the uncoupling agent carbenoxolone reduces nerve stimulation-evoked catecholamine release in control mice and to a larger extent in stressed mice. In parallel, the gap junction-coupled cell network is extended in stressed mice. Altogether, this argues for a significant contribution of adrenomedullary gap junctions to catecholamine secretion in vivo. As such, gap junctional signalling appears to be a substantial component for neuroendocrine function in the adrenal medulla, as it may represent an additional lever regulating hormone release.


Assuntos
Glândulas Suprarrenais/fisiologia , Catecolaminas/metabolismo , Junções Comunicantes/fisiologia , Estresse Fisiológico , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Carbenoxolona/farmacologia , Células Cromafins/metabolismo , Conexinas/genética , Estimulação Elétrica , Isoquinolinas/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transdução de Sinais , Nervos Esplâncnicos/fisiologia , Proteína delta-2 de Junções Comunicantes
19.
Br J Pharmacol ; 170(2): 278-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23725319

RESUMO

BACKGROUND AND PURPOSE: Distinct vasopressin receptors are involved in different physiological and behavioural functions. Presently, no selective agonist is available to specifically elucidate the functional roles of the V1A receptor in the rat, one of the most widely used animal models. FE 201874 is a new derivative of the human selective V1A receptor agonist F180. In this study, we performed a multi-approach pharmacological and functional characterization of FE 201874 to determine whether it is selective for V1A receptors. EXPERIMENTAL APPROACH: We modified an available human selective V1A receptor agonist (F180) and determined its pharmacological properties in cell lines expressing vasopressin/oxytocin receptors (affinity and coupling to second messenger cascades), in an ex vivo model (aorta ring contraction) and in vivo in rats (proliferation of adrenal cortex glomerulosa cells and lactation). KEY RESULTS: FE 201874 exhibited nanomolar affinity for the rat V1A receptor; it was highly selective towards the rat V1B and V2 vasopressin receptors and behaved as a full V1A agonist in all the pharmacological tests performed. FE 201874 bound to the oxytocin receptor, but with moderate affinity, and behaved as an oxytocin antagonist in vitro, but not in vivo. CONCLUSIONS AND IMPLICATIONS: On functional grounds, all the data demonstrate that FE 201874 is the first selective agonist of the rat V1A receptor isoform available. Hence, FE 201874 may have potential as a treatment for the vasodilator-induced hypotension occurring in conditions such as septic shock and could be the most suitable compound for discriminating between the behavioural effects of arginine vasopressin and oxytocin.


Assuntos
Aorta/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Vasopressinas/agonistas , Animais , Aorta/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Lactação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Especificidade da Espécie , Zona Glomerulosa/citologia , Zona Glomerulosa/efeitos dos fármacos
20.
PLoS One ; 7(12): e49708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236353

RESUMO

Growing evidence points to vasopressin (AVP) as a social behavior regulator modulating various memory processes and involved in pathologies such as mood disorders, anxiety and depression. Accordingly, AVP antagonists are actually envisaged as putative treatments. However, the underlying mechanisms are poorly characterized, in particular the influence of AVP on cellular or synaptic activities in limbic brain areas involved in social behavior. In the present study, we investigated AVP action on the synapse between the entorhinal cortex and CA2 hippocampal pyramidal neurons, by using both field potential and whole-cell recordings in mice brain acute slices. Short application (1 min) of AVP transiently reduced the synaptic response, only following induction of long-term potentiation (LTP) by high frequency stimulation (HFS) of afferent fibers. The basal synaptic response, measured in the absence of HFS, was not affected. The Schaffer collateral-CA1 synapse was not affected by AVP, even after LTP, while the Schaffer collateral-CA2 synapse was inhibited. Although investigated only recently, this CA2 hippocampal area appears to have a distinctive circuitry and a peculiar role in controlling episodic memory. Accordingly, AVP action on LTP-increased synaptic responses in this limbic structure may contribute to the role of this neuropeptide in controlling memory and social behavior.


Assuntos
Região CA2 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Região CA2 Hipocampal/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa