Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 299(5): 104628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963491

RESUMO

The GDT1 family is broadly spread and highly conserved among living organisms. GDT1 members have functions in key processes like glycosylation in humans and yeasts and photosynthesis in plants. These functions are mediated by their ability to transport ions. While transport of Ca2+ or Mn2+ is well established for several GDT1 members, their transport mechanism is poorly understood. Here, we demonstrate that H+ ions are transported in exchange for Ca2+ and Mn2+ cations by the Golgi-localized yeast Gdt1 protein. We performed direct transport measurement across a biological membrane by expressing Gdt1p in Lactococcus lactis bacterial cells and by recording either the extracellular pH or the intracellular pH during the application of Ca2+, Mn2+ or H+ gradients. Besides, in vivo cytosolic and Golgi pH measurements were performed in Saccharomyces cerevisiae with genetically encoded pH probes targeted to those subcellular compartments. These data point out that the flow of H+ ions carried by Gdt1p could be reversed according to the physiological conditions. Together, our experiments unravel the influence of the relative concentration gradients for Gdt1p-mediated H+ transport and pave the way to decipher the regulatory mechanisms driving the activity of GDT1 orthologs in various biological contexts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Magnésio/metabolismo , Cátions/metabolismo , Prótons , Lactococcus lactis/genética , Membranas Intracelulares/metabolismo , Espaço Intracelular/química , Espaço Intracelular/metabolismo
2.
J Biol Chem ; 295(12): 3865-3874, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047108

RESUMO

Cases of congenital disorders of glycosylation (CDG) have been associated with specific mutations within the gene encoding the human Golgi TMEM165 (transmembrane protein 165), belonging to UPF0016 (uncharacterized protein family 0016), a family of secondary ion transporters. To date, members of this family have been reported to be involved in calcium, manganese, and pH homeostases. Although it has been suggested that TMEM165 has cation transport activity, direct evidence for its Ca2+- and Mn2+-transporting activities is still lacking. Here, we functionally characterized human TMEM165 by heterologously expressing it in budding yeast (Saccharomyces cerevisiae) and in the bacterium Lactococcus lactis Protein production in these two microbial hosts was enhanced by codon optimization and truncation of the putatively autoregulatory N terminus of TMEM165. We show that TMEM165 expression in a yeast strain devoid of Golgi Ca2+ and Mn2+ transporters abrogates Ca2+- and Mn2+-induced growth defects, excessive Mn2+ accumulation in the cell, and glycosylation defects. Using bacterial cells loaded with the fluorescent Fura-2 probe, we further obtained direct biochemical evidence that TMEM165 mediates Ca2+ and Mn2+ influxes. We also used the yeast and bacterial systems to evaluate the impact of four disease-causing missense mutations identified in individuals with TMEM165-associated CDG. We found that a mutation leading to a E108G substitution within the conserved UPF0016 family motif significantly reduces TMEM165 activity. These results indicate that TMEM165 can transport Ca2+ and Mn2+, which are both required for proper protein glycosylation in cells. Our work also provides tools to better understand the pathogenicity of CDG-associated TMEM165 mutations.


Assuntos
Antiporters/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Complexo de Golgi/metabolismo , Lactococcus lactis/metabolismo , Manganês/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiporters/genética , Proteínas de Transporte de Cátions/genética , Glicosilação , Humanos , Transporte de Íons , Cinética , Manganês/análise , Mutagênese Sítio-Dirigida , Espectrofotometria Atômica
3.
J Biol Chem ; 293(21): 8048-8055, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632074

RESUMO

The uncharacterized protein family 0016 (UPF0016) is a family of secondary ion transporters implicated in calcium homeostasis and some diseases. More precisely, genetic variants of the human UPF0016 ortholog transmembrane protein 165 (TMEM165) have been linked to congenital disorders of glycosylation (CDG). The Saccharomyces cerevisiae ortholog Gdt1p has been shown to be involved in calcium homeostasis and protein glycosylation. Moreover, plant and bacterial UPF0016 members appear to have putative roles in Mn2+ homeostasis. Here, we produced the yeast UPF0016 member Gdt1p in the bacterial host Lactococcus lactis Using Mn2+-induced quenching of Fura-2-emitted fluorescence, we observed that Gdt1p mediates Mn2+ influx, in addition to its previously reported regulation of Ca2+ influx. The estimated Km values of Gdt1p of 15.6 ± 2.6 µm for Ca2+ and 83.2 ± 9.8 µm for Mn2+ indicated that Gdt1p has a higher affinity for Ca2+ than for Mn2+ In yeast cells, we found that Gdt1p is involved in the resistance to high Mn2+ concentration and controls total Mn2+ stores. Lastly, we demonstrated that GDT1 deletion affects the activity of the yeast Mn2+-dependent Sod2p superoxide dismutase, most likely by modulating cytosolic Mn2+ concentrations. Taken together, we obtained first evidence that Gdt1p from yeast directly transports manganese, which strongly reinforces the suggested link between the UPF0016 family and Mn2+ homeostasis and provides new insights into the molecular causes of human TMEM165-associated CDGs. Our results also shed light on how yeast cells may regulate Golgi intraluminal concentrations of manganese, a key cofactor of many enzymes involved in protein glycosylation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Homeostase , Manganês/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Canais de Cálcio/genética , Citosol/metabolismo , Glicosilação , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
4.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28114750

RESUMO

The UPF0016 family is a recently identified group of poorly characterized membrane proteins whose function is conserved through evolution and that are defined by the presence of 1 or 2 copies of the E-φ-G-D-[KR]-[TS] consensus motif in their transmembrane domain. We showed that 2 members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and are likely to form a new group of Ca2+ transporters. Mutations in TMEM165 have been demonstrated to cause a new type of rare human genetic diseases denominated as Congenital Disorders of Glycosylation. Using site-directed mutagenesis, we generated 17 mutations in the yeast Golgi-localized Ca2+ transporter Gdt1p. Single alanine substitutions were targeted to the highly conserved consensus motifs, 4 acidic residues localized in the central cytosolic loop, and the arginine at position 71. The mutants were screened in a yeast strain devoid of both the endogenous Gdt1p exchanger and Pmr1p, the Ca2+ -ATPase of the Golgi apparatus. We show here that acidic and polar uncharged residues of the consensus motifs play a crucial role in calcium tolerance and calcium transport activity and are therefore likely to be architectural components of the cation binding site of Gdt1p. Importantly, we confirm the essential role of the E53 residue whose mutation in humans triggers congenital disorders of glycosylation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/genética , Antiporters , Canais de Cálcio/genética , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223492

RESUMO

By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a ß barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of ß structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".


Assuntos
Detergentes/química , Simulação de Dinâmica Molecular , Peptídeos/química , Aminoácidos/química , Detergentes/farmacologia , Proteínas de Membrana/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Água/química
6.
Sci Rep ; 10(1): 1881, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024908

RESUMO

The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6-6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.


Assuntos
Técnicas Biossensoriais/instrumentação , Complexo de Golgi/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/química , Engenharia Química , Concentração de Íons de Hidrogênio , Isoenzimas/química , Saccharomyces cerevisiae/enzimologia
7.
Genes (Basel) ; 10(7)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319631

RESUMO

The biological importance of manganese lies in its function as a key cofactor for numerous metalloenzymes and as non-enzymatic antioxidant. Due to these two essential roles, it appears evident that disturbed manganese homeostasis may trigger the development of pathologies in humans. In this context, yeast has been extensively used over the last decades to gain insight into how cells regulate intra-organellar manganese concentrations and how human pathologies may be related to disturbed cellular manganese homeostasis. This review first summarizes how manganese homeostasis is controlled in yeast cells and how this knowledge can be extrapolated to human cells. Several manganese-related pathologies whose molecular mechanisms have been studied in yeast are then presented in the light of the function of this cation as a non-enzymatic antioxidant or as a key cofactor of metalloenzymes. In this line, we first describe the Transmembrane protein 165-Congenital Disorder of Glycosylation (TMEM165-CDG) and Friedreich ataxia pathologies. Then, due to the established connection between manganese cations and neurodegeneration, the Kufor-Rakeb syndrome and prion-related diseases are finally presented.


Assuntos
Suscetibilidade a Doenças , Manganês/metabolismo , Leveduras/metabolismo , Animais , Transporte Biológico , Homeostase , Humanos , Manganês/química
8.
Gastroenterol Clin Biol ; 31(12): 1139-42, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18176374

RESUMO

AIM: To estimate the risk of venous thrombosis associated with pancreatic adenocarcinoma and its consequences on treatment and survival. PATIENTS AND METHODS: We retrospectively analyzed a cohort of 90 patients (49 males, 41 females - median age: 67 years [range: 37-94]). Pancreatic adenocarcinoma was histologically proved in 72 patients (81%) and was metastatic in 49 patients (54.4%). A venous thrombosis was observed in 24 patients (26.7%). A pulmonary embolism occurred in 4 patients with 2 deaths. The risk of venous thrombosis was significantly reduced by the use of anti-thrombotic prophylaxis (HR: 0.03 [95CI: 0.003-0.27]) and increased among patients with a biological inflammatory syndrome (HR: 9.0 [95CI: 2.30-34.4]) and metastatic disease (HR: 4.4 [95CI: 1.1-17.9]). Overall survival was not different between patients with (6.6 months) or without (6.1 months) venous thrombosis. CONCLUSION: The risk of venous thrombosis is important and may delay the treatment in patients with advanced pancreatic carcinoma. Some patients with high risk of venous thrombosis may benefit from a prophylactic anticoagulant treatment.


Assuntos
Adenocarcinoma/complicações , Neoplasias Pancreáticas/complicações , Trombose Venosa/etiologia , Adenocarcinoma/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/uso terapêutico , Cateteres de Demora , Causas de Morte , Estudos de Coortes , Feminino , Fibrinolíticos/uso terapêutico , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Embolia Pulmonar/etiologia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Trombose Venosa/prevenção & controle
9.
Sci Rep ; 6: 24282, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075443

RESUMO

Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca(2+) exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca(2+) uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca(2+)/H(+) antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn(2+) to the cells.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Glicosilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Canais de Cálcio/genética , Expressão Gênica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Pressão Osmótica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS One ; 9(6): e100851, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955841

RESUMO

The UPF0016 family is a group of uncharacterized membrane proteins, well conserved through evolution and defined by the presence of one or two copies of an E-Φ-G-D-(KR)-(ST) consensus motif. Our previous results have shown that two members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and might form a new group of cation/Ca2+ exchangers. Most members of the family are made of two homologous clusters of three transmembrane spans, separated by a central loop and assembled with an opposite orientation in the membrane. However, some bacterial members of the family have only one cluster of transmembrane domains. Among these 'single-domain membrane proteins' some cyanobacterial members were found as pairs of adjacent genes within the genome, but each gene was slightly different. We performed a bioinformatic analysis to propose the molecular evolution of the UPF0016 family and the emergence of the antiparallel topology. Our hypotheses were confirmed experimentally using functional complementation in yeast. This suggests an important and conserved function for UPF0016 proteins in a fundamental cellular process. We also show that members of the UPF0016 family share striking similarities, but no primary sequence homology, with members of the cation/Ca2+ exchangers (CaCA) superfamily. Such similarities could be an example of convergent evolution, supporting the previous hypothesis that members of the UPF0016 family are cation/Ca2+ exchangers.


Assuntos
Cálcio/metabolismo , Evolução Molecular , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Citosol/metabolismo , Genes Fúngicos , Variação Genética , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa