Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(17): 7166-7172, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35994426

RESUMO

We demonstrate advantages of samples made by mechanical stacking of exfoliated van der Waals materials for controlling the topological surface state of a three-dimensional topological insulator (TI) via interaction with an adjacent magnet layer. We assemble bilayers with pristine interfaces using exfoliated flakes of the TI BiSbTeSe2 and the magnet Cr2Ge2Te6, thereby avoiding problems caused by interdiffusion that can affect interfaces made by top-down deposition methods. The samples exhibit an anomalous Hall effect (AHE) with abrupt hysteretic switching. For the first time in samples composed of a TI and a separate ferromagnetic layer, we demonstrate that the amplitude of the AHE can be tuned via gate voltage with a strong peak near the Dirac point. This is the signature expected for the AHE due to Berry curvature associated with an exchange gap induced by interaction between the topological surface state and an out-of-plane-oriented magnet.

2.
Phys Rev Lett ; 126(21): 216802, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114831

RESUMO

Electronic analogs of optical interferences are powerful tools to investigate quantum phenomena in condensed matter. In carbon nanotubes (CNTs), it is well established that an electronic Fabry-Perot interferometer can be realized. Other types of quantum interferences should also arise in CNTs, but have proven challenging to realize. In particular, CNTs have been identified as a system to realize the electronic analog of a Sagnac interferometer-the most sensitive optical interferometer. To realize this Sagnac effect, interference between nonidentical transmission channels in a single CNT must be observed. Here, we use suspended, ultraclean CNTs of known chiral index to study both Fabry-Perot and Sagnac electron interferences. We verify theoretical predictions for the behavior of Sagnac oscillations and the persistence of the Sagnac oscillations at high temperatures. As suggested by existing theoretical studies, our results show that these quantum interferences may be used for electronic structure characterization of carbon nanotubes and the study of many-body effects in these model one-dimensional systems.

3.
Phys Rev Lett ; 123(3): 036804, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386462

RESUMO

The paired top and bottom Dirac surface states, each associated with a half-integer quantum Hall (QH) effect, and a resultant integer QH conductance (νe^{2}/h), are hallmarks of a three-dimensional topological insulator (TI). In a dual-gated system, chemical potentials of the paired surface states are controlled through separate gates. In this work, we establish tunable capacitive coupling between the surface states of a bulk-insulating TI BiSbTeSe_{2} and study the effect of this coupling on QH plateaus and Landau level (LL) fan diagram via dual-gate control. We observe nonlinear QH transitions at low charge density in strongly coupled surface states, which are related to the charge-density-dependent coupling strength. A splitting of the N=0 LL at the charge neutrality point for thin devices (but thicker than the 2D limit) indicates intersurface hybridization possibly beyond single-particle effects. By applying capacitor charging models to the surface states, we explore their chemical potential as a function of charge density and extract the fundamental electronic quantity of LL energy gaps from dual-gated transport measurements. These studies are essential for the realization of exotic quantum effects such as topological exciton condensation.

4.
Phys Rev Lett ; 123(19): 197701, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765201

RESUMO

Electronic compressibility, the second derivative of ground-state energy with respect to total electron number, is a measurable quantity that reveals the interaction strength of a system and can be used to characterize the orderly crystalline lattice of electrons known as the Wigner crystal. Here, we measure the electronic compressibility of individual suspended ultraclean carbon nanotubes in the low-density Wigner crystal regime. Using low-temperature quantum transport measurements, we determine the compressibility as a function of carrier number in nanotubes with varying band gaps. We observe two qualitatively different trends in compressibility versus carrier number, both of which can be explained using a theoretical model of a Wigner crystal that accounts for both the band gap and the confining potential experienced by charge carriers. We extract the interaction strength as a function of carrier number for individual nanotubes and show that the compressibility can be used to distinguish between strongly and weakly interacting regimes.

5.
Nano Lett ; 18(12): 8047-8053, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30406664

RESUMO

Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g. the quantum Hall (QH) effect of massless Dirac fermions in topological surface states (TSS). However, to realize more advanced devices and phenomena, there is a need for a platform to tune the TSS or modify them e.g. gap them by proximity with magnetic insulators, in a clean manner. Here we introduce van der Waals (vdW) heterostructures in the form of topological insulator/insulator/graphite to effectively control chemical potential of the TSS. Two types of gate dielectrics, normal insulator hexagonal boron nitride (hBN) and ferromagnetic insulator Cr2Ge2Te6 (CGT) are utilized to tune charge density of TSS in the quaternary TI BiSbTeSe2. hBN/graphite gating in the QH regime shows improved quantization of TSS by suppression of magnetoconductivity of massless Dirac fermions. CGT/graphite gating of massive Dirac fermions in the QH regime yields half-quantized Hall conductance steps and a measure of the Dirac gap. Our work shows the promise of the vdW platform in creating advanced high-quality TI-based devices.

6.
J Am Chem Soc ; 139(1): 19-22, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936659

RESUMO

A family of 2D coordination polymers were successfully synthesized through "bottom-up" techniques using Ni2+, Cu2+, Co2+, and hexaaminobenzene. Liquid-liquid and air-liquid interfacial reactions were used to realize thick (∼1-2 µm) and thin (<10 nm) stacked layers of nanosheet, respectively. Atomic-force microscopy and scanning electron microscopy both revealed the smooth and flat nature of the nanosheets. Selected area diffraction was used to elucidate the hexagonal crystal structure of the framework. Electronic devices were fabricated on thin samples of the Ni analogue and they were found to be mildly conducting and also showed back gate dependent conductance.

7.
Nature ; 464(7286): 209-16, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20220839

RESUMO

Even though bulk metallic systems contain a very large number of strongly interacting electrons, their properties are well described within Landau's Fermi liquid theory of non-interacting quasiparticles. Although many higher-dimensional systems can be successfully understood on the basis of such non-interacting theories, this is not possible for one-dimensional systems. When confined to narrow channels, electron interaction gives rise to such exotic phenomena as spin-charge separation and the emergence of correlated-electron insulators. Such strongly correlated electronic behaviour has recently been seen in experiments on one-dimensional carbon nanotubes and nanowires, and this behaviour challenges the theoretical description of such systems.

9.
Nat Commun ; 13(1): 6386, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302907

RESUMO

As the thickness of a three-dimensional (3D) topological insulator (TI) becomes comparable to the penetration depth of surface states, quantum tunneling between surfaces turns their gapless Dirac electronic structure into a gapped spectrum. Whether the surface hybridization gap can host topological edge states is still an open question. Herein, we provide transport evidence of 2D topological states in the quantum tunneling regime of a bulk insulating 3D TI BiSbTeSe2. Different from its trivial insulating phase, this 2D topological state exhibits a finite longitudinal conductance at ~2e2/h when the Fermi level is aligned within the surface gap, indicating an emergent quantum spin Hall (QSH) state. The transition from the QSH to quantum Hall (QH) state in a transverse magnetic field further supports the existence of this distinguished 2D topological phase. In addition, we demonstrate a second route to realize the 2D topological state via surface gap-closing and topological phase transition mechanism mediated by a transverse electric field. The experimental realization of the 2D topological phase in a 3D TI enriches its phase diagram and marks an important step toward functionalized topological quantum devices.

10.
Nano Lett ; 9(8): 2862-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19719105

RESUMO

In this work, we measure the electrical conductance and temperature of individual, suspended quasi-metallic single-walled carbon nanotubes under high voltage biases using Raman spectroscopy, while varying the doping conditions with an applied gate voltage. By applying a gate voltage, the high-bias conductance can be switched dramatically between linear (Ohmic) behavior and nonlinear behavior exhibiting negative differential conductance (NDC). Phonon populations are observed to be in thermal equilibrium under Ohmic conditions but switch to nonequilibrium under NDC conditions. A typical Landauer transport model assuming zero bandgap is found to be inadequate to describe the experimental data. A more detailed model is presented, which incorporates the doping dependence in order to fit this data.

11.
ACS Nano ; 14(1): 1158-1165, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31833755

RESUMO

Spectroscopy of discrete Landau levels (LLs) in bulk-insulating three-dimensional topological insulators (3D TIs) in perpendicular magnetic field characterizes the Dirac nature of their surface states. Despite a number of studies demonstrating the quantum Hall effect (QHE) of topological surface states, quantitative evaluation of the LL energies, which serve as fundamental electronic quantities for study of the quantum states, is still limited. In this work, we explore the density of states of LLs by measuring quantum capacitance (CQ) in a truly bulk insulating 3D TI via a van der Waals heterostructure configuration. By applying dual-gate voltages, we access the individual surface states' LLs and extract their chemical potentials to quantify the LL spacings of each surface. We evaluate the LLs' energies at two distinguished QH states, namely, dissipationless (ν = ±1) and dissipative (ν = 0) states in the 3D TI.

12.
Adv Mater ; 32(39): e2002663, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32844503

RESUMO

Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin-wave propagation needed for information processing devices. The organic-based magnet [V(TCNE)x ; TCNE = tetracyanoethylene; x ≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non-coherent spin waves on various modes in V(TCNE)x is demonstrated and show that the angular momentum carried by microwave-excited coherent spin waves in a V(TCNE)x film can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)x film. In addition, it is shown that non-coherent spin waves in a V(TCNE)x film, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x . Combining coherent and non-coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic-based magnets.

13.
ACS Nano ; 13(4): 4091-4100, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30865427

RESUMO

Three-dimensional (3D) semimetals have been predicted and demonstrated to have a wide variety of interesting properties associated with their linear energy dispersion. In analogy to two-dimensional (2D) Dirac semimetals, such as graphene, Cd3As2 has shown ultrahigh mobility and large Fermi velocity and has been hypothesized to support plasmons at terahertz frequencies. In this work, we experimentally demonstrate synthesis of high-quality large-area Cd3As2 thin films through thermal evaporation as well as the experimental realization of plasmonic structures consisting of periodic arrays of Cd3As2 stripes. These arrays exhibit sharp resonances at terahertz frequencies with associated quality factors ( Q) as high as ∼3.7 (at 0.82 THz). Such spectrally narrow resonances can be understood on the basis of a long momentum scattering time, which in our films can approach ∼1 ps at room temperature. Moreover, we demonstrate an ultrafast tunable response through excitation of photoinduced carriers in optical pump/terahertz probe experiments. Our results evidence that the intrinsic 3D nature of Cd3As2 might provide for a very robust platform for terahertz plasmonic applications. Moreover, the long momentum scattering time as well as large kinetic inductance in Cd3As2 also holds enormous potential for the redesign of passive elements such as inductors and hence can have a profound impact in the field of RF integrated circuits.

14.
Nat Commun ; 10(1): 129, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631053

RESUMO

Recently the hybrid organic-inorganic trihalide perovskites have shown remarkable performance as active layers in photovoltaic and other optoelectronic devices. However, their spin characteristic properties have not been fully studied, although due to the relatively large spin-orbit coupling these materials may show great promise for spintronic applications. Here we demonstrate spin-polarized carrier injection into methylammonium lead bromide films from metallic ferromagnetic electrodes in two spintronic-based devices: a 'spin light emitting diode' that results in circularly polarized electroluminescence emission; and a 'vertical spin valve' that shows giant magnetoresistance. In addition, we also apply a magnetic field perpendicular to the injected spins orientation for measuring the 'Hanle effect', from which we obtain a relatively long spin lifetime for the electrically injected carriers. Our measurements initiate the field of hybrid perovskites spin-related optoelectronic applications.

15.
Sci Rep ; 8(1): 17290, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470769

RESUMO

Despite numerous studies on three-dimensional topological insulators (3D TIs), the controlled growth of high quality (bulk-insulating and high mobility) TIs remains a challenging subject. This study investigates the role of growth methods on the synthesis of single crystal stoichiometric BiSbTeSe2 (BSTS). Three types of BSTS samples are prepared using three different methods, namely melting growth (MG), Bridgman growth (BG) and two-step melting-Bridgman growth (MBG). Our results show that the crystal quality of the BSTS depend strongly on the growth method. Crystal structure and composition analyses suggest a better homogeneity and highly-ordered crystal structure in BSTS grown by MBG method. This correlates well to sample electrical transport properties, where a substantial improvement in surface mobility is observed in MBG BSTS devices. The enhancement in crystal quality and mobility allow the observation of well-developed quantum Hall effect at low magnetic field.

16.
Nat Nanotechnol ; 8(12): 923-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24240431

RESUMO

Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications including timing references and frequency modulators. However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here, we report oscillators built on micrometre-size, atomically thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. Self-sustaining mechanical motion is generated and transduced at room temperature in these oscillators using simple electrical circuitry. The prototype graphene voltage-controlled oscillators exhibit frequency stability and a modulation bandwidth sufficient for the modulation of radiofrequency carrier signals. As a demonstration, we use a graphene oscillator as the active element for frequency-modulated signal generation and achieve efficient audio signal transmission.


Assuntos
Grafite/química , Fenômenos Mecânicos , Sistemas Microeletromecânicos/instrumentação , Nanotecnologia/instrumentação , Transdutores
17.
Science ; 323(5910): 106-10, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19119228

RESUMO

The Mott insulating state is a manifestation of strong electron interactions in nominally metallic systems. Using transport spectroscopy, we showed that an energy gap exists in nominally metallic carbon nanotubes and occurs in addition to the band gap in small-band-gap nanotubes, indicating that carbon nanotubes are never metallic. This gap has a magnitude of approximately 10 to 100 milli-electron volts and a nanotube radius (r) dependence of approximately 1/r, which is in good agreement with predictions for a nanotube Mott insulating state. We also observed neutral excitations within the gap, as predicted for this state. Our results underscore nanotubes' exceptional capabilities for use in studying correlated electron phenomena in one dimension.

18.
Nano Lett ; 9(2): 607-11, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19161322

RESUMO

Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G(-) band is observed to downshift with small applied gate voltages, with the minima occurring at E(F) = +/-(1)/(2)E(phonon), contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages results in a "W"-shaped Raman shift profile that agrees well with a nonadiabatic phonon renormalization model. This behavior constitutes the first experimental confirmation of the theoretically predicted breakdown of the Born-Oppenheimer approximation in individual single-walled carbon nanotubes.

19.
Phys Rev Lett ; 102(10): 105501, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392122

RESUMO

Spatially resolved Raman spectra of individual pristine suspended carbon nanotubes are observed under electrical heating. The Raman G+ and G- bands show unequal temperature profiles. The preferential heating is more pronounced in short nanotubes (2 microm) than in long nanotubes (5 microm). These results are understood in terms of the decay and thermalization of nonequilibrium phonons, revealing the mechanism of thermal transport in these devices. The measurements also enable a direct estimate of thermal contact resistances and the spatial variation of thermal conductivity.

20.
Phys Rev Lett ; 103(6): 067401, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792611

RESUMO

Large modulations of up to 2 orders of magnitude are observed in the Raman intensity of pristine, suspended, quasimetallic, single-walled carbon nanotubes in response to applied gate potentials. No change in the resonance condition is observed, and all Raman bands exhibit the same changes in intensity, regardless of phonon energy or laser excitation energy. The effect is not observed in semiconducting nanotubes. The electronic energy gaps correlate with the drop in the Raman intensity, and the recently observed Mott insulating behavior is suggested as a possible explanation for this effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa