Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130591

RESUMO

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Assuntos
Metilação de DNA , Deficiência Intelectual , Anormalidades Múltiplas , Cromatina , Metilação de DNA/genética , Epigênese Genética , Face/anormalidades , Doenças Hematológicas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares
2.
Am J Obstet Gynecol ; 230(3): 368.e1-368.e12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37717890

RESUMO

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE: This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN: This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS: A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION: Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.


Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Masculino , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudos Retrospectivos , Diagnóstico Pré-Natal , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/genética , Cuidado Pré-Natal
3.
Pediatr Nephrol ; 39(10): 2911-2913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38753084

RESUMO

Infantile hypercalcemia (IH) is a rare genetic disorder characterized by hypercalcemia, hypercalciuria, low parathyroid hormone, and nephrocalcinosis during the first months of life. Biallelic variants in the genes CYP24A1 and SCL34A1 cause IH1 and 2, respectively. We present the case of a newborn with an antenatal diagnosis of IH2 due to the identification of echogenic, yet normal-sized kidneys at 23 weeks gestation. Trio whole-exome sequencing initially identified only a heterozygous pathogenic variant in SLC34A1. Re-analysis of the exome data because of the clinical suspicion of IH2 revealed a 21-basepair deletion in trans that had initially been filtered out because of its high allele frequency. The diagnosis of IH2 enabled postnatal screening for hypercalcemia, present already at week 1, resulting in early treatment with phosphate supplementation and vitamin D avoidance. In the subsequent course, biochemical parameters were normalized, and the patient showed no obvious clinical complications of IH2, apart from the nephrocalcinosis.


Assuntos
Hipercalcemia , Humanos , Hipercalcemia/genética , Hipercalcemia/diagnóstico , Recém-Nascido , Feminino , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Gravidez , Sequenciamento do Exoma , Vitamina D3 24-Hidroxilase/genética , Nefrocalcinose/genética , Nefrocalcinose/diagnóstico , Masculino , Vitamina D/sangue , Vitamina D/uso terapêutico , Fosfatos/sangue , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal
4.
Am J Hum Genet ; 107(4): 753-762, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910914

RESUMO

Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Lamina Tipo B/genética , Microcefalia/genética , Mutação , Lâmina Nuclear/genética , Sequência de Aminoácidos , Sequência de Bases , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Nanismo/diagnóstico por imagem , Nanismo/metabolismo , Nanismo/patologia , Feminino , Expressão Gênica , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lamina Tipo B/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/metabolismo , Microcefalia/patologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
5.
Prenat Diagn ; 43(10): 1333-1343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592442

RESUMO

OBJECTIVES: To assess maternal characteristics and comorbidities in patients with persistent uninterpretable non-invasive prenatal testing (NIPT) and to evaluate the association with adverse pregnancy outcome in a general risk population. METHODS: A retrospective cohort study (July 2017-December 2020) was conducted of patients with persistent uninterpretable NIPT samples. Maternal characteristics and pregnancy outcomes were compared with the general Belgian obstetric population. RESULTS: Of the 148 patients with persistent uninterpretable NIPT, 37 cases were due to a low fetal fraction (LFF) and 111 due to a low quality score (LQS). Both groups (LFF, LQS) showed more obesity (60.6%, 42.4%), multiple pregnancies (18.9%, 4.5%) and more obstetrical complications. In the LQS group, a high rate of maternal auto-immune disorders (30.6%) was seen and hypertensive complications (17.6%), preterm birth (17.6%) and neonatal intensive care unit (NICU) admission (22%) were significantly increased. In the LFF group hypertensive complications (21.6%), gestational diabetes (20.6%), preterm birth (27%), SGA (25.6%), major congenital malformations (11.4%), c-section rate (51.4%) and NICU admission (34.9%) were significantly increased. Chromosomal abnormalities were not increased in both groups. CONCLUSIONS: Patients with persistent uninterpretable NIPT have significantly more maternal obesity, comorbidities and adverse pregnancy outcome than the general population and should receive high-risk pregnancy care. Distinguishing between LFF and LQS optimizes counseling because maternal characteristics and pregnancy outcome differ between these groups.


Assuntos
Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Gravidez , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/epidemiologia , Estudos Retrospectivos , Cuidado Pré-Natal , Feto , Família
6.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006512

RESUMO

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Assuntos
DNA Polimerase I/genética , DNA Primase/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Transtornos do Crescimento/etiologia , Hipogonadismo/etiologia , Deficiência Intelectual/etiologia , Microcefalia/etiologia , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Transtornos do Crescimento/patologia , Humanos , Hipogonadismo/patologia , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma
8.
Genet Med ; 24(12): 2475-2486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197437

RESUMO

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Assuntos
Transtorno do Espectro Autista , Displasia Ectodérmica , Transtornos do Neurodesenvolvimento , Humanos , Couro Cabeludo/anormalidades , Couro Cabeludo/metabolismo , Transtorno do Espectro Autista/genética , Células HEK293 , Fator de Transcrição AP-1/genética , Éxons/genética , Displasia Ectodérmica/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro , Antígeno 2 Relacionado a Fos/genética
9.
Genet Med ; 24(8): 1774-1780, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567594

RESUMO

PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA/genética , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
10.
Neurogenetics ; 22(3): 207-213, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683518

RESUMO

A de novo 0.95 Mb 8p21.3 deletion had been identified in an individual with non-syndromic autism spectrum disorder (ASD) through high-resolution copy number variant analysis. Subsequent screening of in-house and publicly available databases resulted in the identification of six additional individuals with 8p21.3 deletions. Through case-based reasoning, we conclude that 8p21.3 deletions are rare causes of non-syndromic neurodevelopmental and neuropsychiatric disorders. Based on literature data, we highlight six genes within the region of minimal overlap as potential ASD genes or genes for neuropsychiatric disorders: DMTN, EGR3, FGF17, LGI3, PHYHIP, and PPP3CC.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Predisposição Genética para Doença/genética , Humanos , Fatores de Risco
11.
Hum Mol Genet ; 28(22): 3724-3733, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884517

RESUMO

The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.


Assuntos
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Recombinação Homóloga/genética , Adulto , Alelos , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Duplicações Segmentares Genômicas/genética , Sequenciamento Completo do Genoma/métodos
12.
Clin Genet ; 99(3): 449-456, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340101

RESUMO

Pathogenic variants in the RBM10 gene cause a rare X-linked disorder described as TARP (Talipes equinovarus, Atrial septal defect, Robin sequence, and Persistent left vena cava superior) syndrome. We report two novel patients with truncating RBM10 variants in view of the literature, presenting a total of 26 patients from 15 unrelated families. Our results illustrate the highly pleiotropic nature of RBM10 pathogenic variants, beyond the classic TARP syndrome features. Major clinical characteristics include severe developmental delay, failure to thrive, brain malformations, neurological symptoms, respiratory issues, and facial dysmorphism. Minor features are growth retardation, cardiac, gastrointestinal, limb, and skeletal abnormalities. Additional recurrent features include genital and renal abnormalities as well as hearing and visual impairment. Thus, RBM10 loss of function variants typically cause an intellectual disability and congenital malformation syndrome that requires assessment of multiple organ systems at diagnosis and for which provided clinical features might simplify diagnostic assessment. Furthermore, evidence for an RBM10-related genotype-phenotype correlation is emerging, which can be important for prognosis.


Assuntos
Pé Torto Equinovaro/genética , Estudos de Associação Genética , Variação Genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Fenótipo , Síndrome de Pierre Robin/genética , Proteínas de Ligação a RNA/genética , Criança , Pré-Escolar , Humanos , Deficiência Intelectual/diagnóstico , Mutação com Perda de Função , Masculino , Malformações do Sistema Nervoso/diagnóstico , Prognóstico
13.
Prenat Diagn ; 41(10): 1264-1272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405430

RESUMO

Cancer is diagnosed in one in 1000 to 1500 pregnancies. Most frequently encountered malignancies during pregnancy are breast cancer, hematological cancer, cervical cancer and malignant melanoma. Maternal cancer is associated with an increased risk of IUGR and preterm labor, especially in patients with systemic disease or those receiving chemotherapy during pregnancy, requiring a high-risk obstetrical follow-up. Fetal aneuploidy screening by non-invasive prenatal testing (NIPT) can lead to the incidental identification of copy number alterations derived from non-fetal cell-free DNA (cfDNA), as seen in certain cases of maternal malignancy. The identification of tumor-derived cfDNA requires further clinical, biochemical, radiographic and histological investigations to confirm the diagnosis. In such cases, reliable risk estimation for fetal trisomy 21, 18 and 13 is impossible. Therefore, invasive testing should be offered when ultrasonographic screening reveals an increased risk for chromosomal anomalies, or when a more accurate test is desired. When the fetal karyotype is normal, long term implications for the fetus refer to the consequences of the maternal disease and treatment during pregnancy. This manuscript addresses parental questions when NIPT suggests a maternal malignancy. Based on current evidence and our own experience, a clinical management scheme in a multidisciplinary setting is proposed.


Assuntos
Neoplasias/diagnóstico , Teste Pré-Natal não Invasivo/métodos , Pais/psicologia , Adulto , Bélgica/epidemiologia , Transtornos Cromossômicos/diagnóstico , Feminino , Humanos , Neoplasias/complicações , Neoplasias/epidemiologia , Teste Pré-Natal não Invasivo/instrumentação , Gravidez , Estudos Prospectivos
14.
Genet Med ; 22(5): 962-973, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024963

RESUMO

PURPOSE: Whereas noninvasive prenatal screening for aneuploidies is widely implemented, there is an increasing need for universal approaches for noninvasive prenatal screening for monogenic diseases. Here, we present a cost-effective, generic cell-free fetal DNA (cffDNA) haplotyping approach to scan the fetal genome for the presence of inherited monogenic diseases. METHODS: Families participating in the preimplantation genetic testing for monogenic disorders (PGT-M) program were recruited for this study. Two hundred fifty thousand single-nucleotide polymorphisms (SNPs) captured from maternal plasma DNA along with genomic DNA from family members were massively parallel sequenced. Parental genotypes were phased via an available genotype from a close relative, and the fetal genome-wide haplotype and copy number were determined using cffDNA haplotyping analysis based on estimation and segmentation of fetal allele presence in the maternal plasma. RESULTS: In all families tested, mutational profiles from cffDNA haplotyping are consistent with embryo biopsy profiles. Genome-wide fetal haplotypes are on average 97% concordant with the newborn haplotypes and embryo haplotypes. CONCLUSION: We demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs from maternal plasma cell-free DNA (cfDNA) allows haplotyping and copy-number profiling of the fetal genome during pregnancy. The method enables the accurate reconstruction of the fetal haplotypes and can be easily implemented in clinical practice.


Assuntos
Ácidos Nucleicos Livres , Teste Pré-Natal não Invasivo , Ácidos Nucleicos Livres/genética , DNA/genética , Feminino , Haplótipos , Humanos , Recém-Nascido , Plasma , Gravidez , Diagnóstico Pré-Natal
15.
Clin Genet ; 97(4): 595-600, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022899

RESUMO

Ectodermal dysplasias are a family of genodermatoses commonly associated with variants in the ectodysplasin/NF-κB or the Wnt/ß-catenin pathways. Both pathways are involved in signal transduction from ectoderm to mesenchyme during the development of ectoderm-derived structures. Wnt/ß-catenin pathway requires the lymphoid enhancer-binding factor 1 (LEF1), a nuclear mediator, to activate target gene expression. In mice, targeted inactivation of the LEF1 gene results in a complete block of development of multiple ectodermal appendages. We report two unrelated patients with 4q25 de novo deletion encompassing LEF1, associated with severe oligodontia of primary and permanent dentition, hypotrichosis and hypohidrosis compatible with hypohidrotic ectodermal dysplasia. Taurodontism and a particular alveolar bone defect were also observed in both patients. So far, no pathogenic variants or variations involving the LEF1 gene have been reported in human. We provide further evidence for LEF1 haploinsufficiency role in ectodermal dysplasia and delineate its clinical phenotype.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Adulto , Animais , Pré-Escolar , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/patologia , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Feminino , Haploinsuficiência/genética , Humanos , Masculino , Camundongos , NF-kappa B/genética , Transdução de Sinais/genética , Adulto Jovem , beta Catenina/genética
16.
Mol Psychiatry ; 24(11): 1748-1768, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728705

RESUMO

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Transtorno da Conduta/genética , Feminino , Genes Ligados ao Cromossomo X , Células HEK293 , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Fatores de Transcrição/genética , Ubiquitinação , Inativação do Cromossomo X , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Hum Mutat ; 39(7): 993-1001, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691940

RESUMO

Mutations in CASK cause a wide spectrum of phenotypes in humans ranging from mild X-linked intellectual disability to a severe microcephaly (MC) and pontocerebellar hypoplasia syndrome. Nevertheless, predicting pathogenicity and phenotypic consequences of novel CASK mutations through the exclusive consideration of genetic information and population-based data remains a challenge. Using whole exome sequencing, we identified four novel CASK mutations in individuals with syndromic MC. To understand the functional consequences of the different point mutations on the development of MC and cerebellar defects, we established a transient loss-of-function zebrafish model, and demonstrate recapitulation of relevant neuroanatomical phenotypes. Furthermore, we utilized in vivo complementation studies to demonstrate that the three point mutations confer a loss-of-function effect. This work endorses zebrafish as a tractable model to rapidly assess the effect of novel CASK variants on brain development.


Assuntos
Predisposição Genética para Doença , Guanilato Quinases/genética , Deficiência Intelectual/genética , Microcefalia/genética , Animais , Cerebelo/fisiopatologia , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Deficiência Intelectual/fisiopatologia , Mutação com Perda de Função/genética , Masculino , Microcefalia/fisiopatologia , Mutação , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra/genética
18.
Am J Hum Genet ; 96(5): 753-64, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25892112

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Assuntos
Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/genética , Transportador de Glucose Tipo 3/genética , Cardiopatias Congênitas/genética , Adulto , Aorta Torácica/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Feminino , Genótipo , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
19.
Am J Med Genet A ; 176(11): 2375-2381, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30345654

RESUMO

Nonsyndromic orofacial clefting is one of the most frequently occurring congenital conditions. The aim of the study was to investigate the prevalence and nature of reduced olfactory function in patients with nonsyndromic cleft lip and/or cleft palate (NSCL/P) and their unaffected first-degree relatives. Olfactory function was tested using the Sniffin' Sticks identification test in patients with NSCL/P, in their unaffected relatives, and in control subjects. MR imaging was performed to measure olfactory bulb (OB) volumes and olfactory sulcus (OS) depths. A reduced olfactory function was seen in significantly more patients with NSCL/P (p = .002) than in control subjects, regardless of the cleft type. Strikingly, unaffected relatives of patients with NSCL/P also had a higher rate of hyposmia (p = .001). In hyposmic patients, the OB volumes (left: p = .01 and right: p = .003) and the depth of the left OS (p = .02) were significantly smaller than in controls. In hyposmic relatives, both OS depths (left: p = .02 and right: p = .03) were significantly smaller. Patients with NSCL/P and their unaffected relatives have an increased prevalence of reduced olfactory function, associated with changes in the central olfactory structures.


Assuntos
Encéfalo/anormalidades , Fenda Labial/fisiopatologia , Fissura Palatina/fisiopatologia , Família , Olfato/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Fenda Labial/diagnóstico por imagem , Fissura Palatina/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Tamanho do Órgão
20.
Am J Med Genet A ; 176(7): 1549-1558, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30160831

RESUMO

Chromosome 1q41-q42 deletions have recently been associated with a recognizable neurodevelopmental syndrome of early childhood (OMIM 612530). Within this group, a predominant phenotype of developmental delay (DD), intellectual disability (ID), epilepsy, distinct dysmorphology, and brain anomalies on magnetic resonance imaging/computed tomography has emerged. Previous reports of patients with de novo deletions at 1q41-q42 have led to the identification of an evolving smallest region of overlap which has included several potentially causal genes including DISP1, TP53BP2, and FBXO28. In a recent report, a cohort of patients with de novo mutations in WDR26 was described that shared many of the clinical features originally described in the 1q41-q42 microdeletion syndrome (MDS). Here, we describe a novel germline FBXO28 frameshift mutation in a 3-year-old girl with intractable epilepsy, ID, DD, and other features which overlap those of the 1q41-q42 MDS. Through a familial whole-exome sequencing study, we identified a de novo FBXO28 c.972_973delACinsG (p.Arg325GlufsX3) frameshift mutation in the proband. The frameshift and resulting premature nonsense mutation have not been reported in any genomic database. This child does not have a large 1q41-q42 deletion, nor does she harbor a WDR26 mutation. Our case joins a previously reported patient also in whom FBXO28 was affected but WDR26 was not. These findings support the idea that FBXO28 is a monogenic disease gene and contributes to the complex neurodevelopmental phenotype of the 1q41-q42 gene deletion syndrome.


Assuntos
Transtornos Dismórficos Corporais/genética , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Deficiências do Desenvolvimento/genética , Epilepsia Resistente a Medicamentos/genética , Mutação da Fase de Leitura , Proteínas Ligases SKP Culina F-Box/genética , Transtornos Dismórficos Corporais/patologia , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Epilepsia Resistente a Medicamentos/patologia , Exoma , Feminino , Humanos , Fenótipo , Prognóstico , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa