Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Indian J Med Res ; 159(1): 91-101, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344919

RESUMO

BACKGROUND OBJECTIVES: The clinical course of COVID-19 and its prognosis are influenced by both viral and host factors. The objectives of this study were to develop a nationwide platform to investigate the molecular epidemiology of SARS-CoV-2 (Severe acute respiratory syndrome Corona virus 2) and correlate the severity and clinical outcomes of COVID-19 with virus variants. METHODS: A nationwide, longitudinal, prospective cohort study was conducted from September 2021 to December 2022 at 14 hospitals across the country that were linked to a viral sequencing laboratory under the Indian SARS-CoV-2 Genomics Consortium. All participants (18 yr and above) who attended the hospital with a suspicion of SARS-CoV-2 infection and tested positive by the reverse transcription-PCR method were included. The participant population consisted of both hospitalized as well as outpatients. Their clinical course and outcomes were studied prospectively. Nasopharyngeal samples collected were subjected to whole genome sequencing to detect SARS-CoV-2 variants. RESULTS: Of the 4972 participants enrolled, 3397 provided samples for viral sequencing and 2723 samples were successfully sequenced. From this, the evolution of virus variants of concern including Omicron subvariants which emerged over time was observed and the same reported here. The mean age of the study participants was 41 yr and overall 49.3 per cent were female. The common symptoms were fever and cough and 32.5 per cent had comorbidities. Infection with the Delta variant evidently increased the risk of severe COVID-19 (adjusted odds ratio: 2.53, 95% confidence interval: 1.52, 4.2), while Omicron was milder independent of vaccination status. The independent risk factors for mortality were age >65 yr, presence of comorbidities and no vaccination. INTERPRETATION CONCLUSIONS: The authors believe that this is a first-of-its-kind study in the country that provides real-time data of virus evolution from a pan-India network of hospitals closely linked to the genome sequencing laboratories. The severity of COVID-19 could be correlated with virus variants with Omicron being the milder variant.


Assuntos
COVID-19 , Feminino , Humanos , Masculino , Progressão da Doença , Hospitais , Estudos Prospectivos , SARS-CoV-2/genética , Adulto , Adolescente , Idoso , Pessoa de Meia-Idade
2.
Nucleic Acids Res ; 50(19): 11028-11039, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243983

RESUMO

The lysine-rich coiled-coil 1 (KRCC1) protein is overexpressed in multiple malignancies, including ovarian cancer, and overexpression correlates with poor overall survival. Despite a potential role in cancer progression, the biology of KRCC1 remains elusive. Here, we characterize the biology of KRCC1 and define its role in the DNA damage response and in cell cycle progression. We demonstrate that KRCC1 associates with the checkpoint kinase 1 (CHK1) upon DNA damage and regulates the CHK1-mediated checkpoint. KRCC1 facilitates RAD51 recombinase foci formation and augments homologous recombination repair. Furthermore, KRCC1 is required for proper S-phase progression and subsequent mitotic entry. Our findings uncover a novel component of the DNA damage response and a potential link between cell cycle, associated damage response and DNA repair.


Assuntos
Proteínas Quinases , Rad51 Recombinase , Proteínas Quinases/genética , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Dano ao DNA , Reparo de DNA por Recombinação
3.
Environ Sci Technol ; 57(19): 7442-7453, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37144860

RESUMO

Some contemporary aqueous film-forming foams (AFFFs) contain n:3 and n:1:2 fluorotelomer betaines (FTBs), which are often detected at sites impacted by AFFFs. As new chemical replacements, little is known about their environmental fate. For the first time, we investigated the biotransformation potential of 5:3 and 5:1:2 FTBs and a commercial AFFF that mainly contains n:3 and n:1:2 FTBs (n = 5, 7, 9, 11, and 13). Although some polyfluoroalkyl compounds are precursors to perfluoroalkyl acids, 5:3 and 5:1:2 FTBs exhibited high persistence, with no significant changes even after 120 days of incubation. While the degradation of 5:3 FTB into suspected products such as fluorotelomer acids or perfluoroalkyl carboxylic acids (PFCAs) could not be conclusively confirmed, we did identify a potential biotransformation product, 5:3 fluorotelomer methylamine. Similarly, 5:1:2 FTB did not break down or produce short-chain hydrogen-substituted polyfluoroalkyl acids (n:2 H-FTCA), hydrogen-substituted PFCA (2H-PFCA), or any other products. Incubating the AFFF in four soils with differing properties and microbial communities resulted in 0.023-0.25 mol % PFCAs by day 120. Most of the products are believed to be derived from n:2 fluorotelomers, minor components of the AFFF. Therefore, the findings of the study cannot be fully explained by the current understanding of structure-biodegradability relationships.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Betaína , Solo , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água , Ácidos Carboxílicos/metabolismo
4.
Mater Today (Kidlington) ; 56: 79-95, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36188120

RESUMO

The tumor microenvironment (TME) plays a key role in the poor prognosis of many cancers. However, there is a knowledge gap concerning how multicellular communication among the critical players within the TME contributes to such poor outcomes. Using epithelial ovarian cancer (EOC) as a model, we show how crosstalk among cancer cells (CC), cancer associated fibroblasts (CAF), and endothelial cells (EC) promotes EOC growth. We demonstrate here that co-culturing CC with CAF and EC promotes CC proliferation, migration, and invasion in vitro and that co-implantation of the three cell types facilitates tumor growth in vivo. We further demonstrate that disruption of this multicellular crosstalk using a gold nanoparticle (GNP) inhibits these pro-tumorigenic phenotypes in vitro as well as tumor growth in vivo. Mechanistically, GNP treatment reduces expression of several tumor-promoting cytokines and growth factors, resulting in inhibition of MAPK and PI3K-AKT activation and epithelial-mesenchymal transition - three key oncogenic signaling pathways responsible for the aggressiveness of EOC. The current work highlights the importance of multicellular crosstalk within the TME and its role for the aggressive nature of EOC, and demonstrates the disruption of these multicellular communications by self-therapeutic GNP, thus providing new avenues to interrogate the crosstalk and identify key perpetrators responsible for poor prognosis of this intractable malignancy.

5.
EMBO Rep ; 21(10): e48483, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32851774

RESUMO

MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression. Here, we demonstrate that microRNA-195-5p (miR-195) directly targets the 3' UTR of the MICU1 mRNA and represses MICU1 expression. Additionally, miR-195 is under-expressed in ovarian cancer cell lines, and restoring miR-195 expression reestablishes native MICU1 levels and the associated phenotypes. Stable expression of miR-195 in a human xenograft model of ovarian cancer significantly reduces tumor growth, increases tumor doubling times, and enhances overall survival. In conclusion, miR-195 controls MICU1 levels in ovarian cancer and could be exploited to normalize aberrant MICU1 expression, thus reversing both glycolysis and chemoresistance and consequently improving patient outcomes.


Assuntos
Proteínas de Transporte de Cátions , MicroRNAs , Neoplasias Ovarianas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neoplasias Ovarianas/genética
6.
World J Microbiol Biotechnol ; 38(10): 171, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907093

RESUMO

Rare microbial taxa [bacterial and archaeal operational taxonomic units (OTUs) with mean relative abundance ≤ 0.001%] were critical for ecosystem function, yet, their identity and function remained incompletely understood, particularly in arsenic (As) contaminated rice soils. In the present study we have characterized the rare populations of the As-contaminated rice soil microbiomes from West Bengal (India) in terms of their identity, interaction and potential function. Major proportion of the OTUs (73% of total 38,289 OTUs) was represented by rare microbial taxa (henceforth mentioned as rare taxa), which covered 4.5-15.7% of the different communities. Taxonomic assignment of the rare taxa showed their affiliation to members of Gamma-, Alpha-, Delta- Proteobacteria, Actinobacteria, and Acidobacteria. SO42-, NO3-, NH4+and pH significantly impacted the distribution of rare taxa. Rare taxa positively correlated with As were found to be more frequent in relatively high As soil while the rare taxa negatively correlated with As were found to be more frequent in relatively low As soil. Co-occurrence-network analysis indicated that rare taxa whose abundance were correlated strongly (R > 0.8) with As also had strong association (R > 0.8) with PO42-, NO3-, and NH4+. Correlation analysis indicated that the rare taxa were likely to involved in two major guilds one, involved in N-metabolism and the second involved in As/Fe as well as other metabolisms. Role of the rare taxa in denitrification and dissimilatory NO3- reduction (DNRA), As biotransformation, S-, H-, C- and Fe-, metabolism was highlighted from 16S rRNA gene-based predictive analysis. Phylogenetic analysis of rare taxa indicated signatures of inhabitant rice soil microorganisms having significant roles in nitrogen (N) cycle and As-Fe metabolism. This study provided critical insights into the taxonomic identity, metabolic potentials and importance of the rare taxa in As biotransformation and biogeochemical cycling of essential nutrients in As-impacted rice soils.


Assuntos
Arsênio , Microbiota , Oryza , Poluentes do Solo , Arsênio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Oryza/genética , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
7.
FASEB J ; 34(7): 9372-9392, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463541

RESUMO

Mutations in the human cystathionine beta synthase (CBS) gene are known to cause endothelial dysfunction responsible for cardiovascular and neurovascular diseases. CBS is the predominant hydrogen sulfide (H2 S)-producing enzyme in endothelial cells (ECs). Recently, H2 S was shown to attenuate ROS and improve mitochondrial function. Mitochondria are metabolic organelles that actively transform their ultrastructure to mediate their function. Therefore, we questioned whether perturbation of CBS/H2 S activity could drive mitochondrial dysfunction via mitochondrial dynamics in ECs. Here we demonstrate that silencing CBS induces mitochondria fragmentation, attenuates efficient oxidative phosphorylation, and decreases EC function. Mechanistically, CBS silencing significantly elevates ROS production, thereby leading to reduced mitofusin 2 (MFN2) expression, decouple endoplasmic reticulum-mitochondria contacts, increased mitochondria fission, enhanced receptor-mediated mitophagy, and increased EC death. These defects were significantly rescued by the treatment of H2 S donors. Taken together our data highlights a novel signaling axis that mechanistically links CBS with mitochondrial function and ER-mitochondrial tethering and could be considered as a new therapeutic approach for the intervention of EC dysfunction-related pathologies.


Assuntos
Cistationina beta-Sintase/metabolismo , Endotélio Vascular/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Mitofagia , Estresse Oxidativo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Endotélio Vascular/citologia , Humanos , Transdução de Sinais
8.
FASEB J ; 34(9): 12024-12039, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32692445

RESUMO

Macropinocytosis supports the metabolic requirement of RAS-transformed pancreatic ductal adenocarcinoma cells (PDACs). However, regulators of RAS-transformation (activation) that lead to macropinocytosis have not been identified. Herein, we report that UBAP2 (ubiquitin-binding associated protein 2), regulates the activation of KRAS and macropinocytosis in pancreatic cancer. We demonstrate that UBAP2 is highly expressed in both pancreatic cancer cell lines and tumor tissues of PDAC patients. The expression of UBAP2 is associated with poor overall survival in several cancers, including PDAC. Silencing UBAP2 decreases the levels of activated KRAS, and inhibits macropinocytosis, and tumor growth in vivo. Using a UBAP2-deletion construct, we demonstrate that the UBA-domain of UBAP2 is critical for the regulation of macropinocytosis and maintaining the levels of activated KRAS. In addition, UBAP2 regulates RAS downstream signaling and helps maintain RAS in the GTP-bound form. However, the exact mechanism by which UBAP2 regulates KRAS activation is unknown and needs further investigation. Thus, UBAP2 may be exploited as a potential therapeutic target to inhibit macropinocytosis and tumor growth in activated KRAS-driven cancers.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitose , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ativação Enzimática , Inativação Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
FASEB J ; 34(2): 2287-2300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908025

RESUMO

Using a systems biology approach to prioritize potential points of intervention in ovarian cancer, we identified the lysine rich coiled-coil 1 (KRCC1), as a potential target. High-grade serous ovarian cancer patient tumors and cells express significantly higher levels of KRCC1 which correlates with poor overall survival and chemoresistance. We demonstrate that KRCC1 is predominantly present in the chromatin-bound nuclear fraction, interacts with HDAC1, HDAC2, and with the serine-threonine phosphatase PP1CC. Silencing KRCC1 inhibits cellular plasticity, invasive properties, and potentiates apoptosis resulting in reduced tumor growth. These phenotypes are associated with increased acetylation of histones and with increased phosphorylation of H2AX and CHK1, suggesting the modulation of transcription and DNA damage that may be mediated by the action of HDAC and PP1CC, respectively. Hence, we address an urgent need to develop new targets in cancer.


Assuntos
Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Neoplasias Ovarianas , Transcrição Gênica , Linhagem Celular Tumoral , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosforilação , Fatores de Risco
10.
Bioconjug Chem ; 30(6): 1724-1733, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31067032

RESUMO

It is currently recognized that perpetual cross talk among key players in tumor microenvironment such as cancer cells (CCs), cancer associated fibroblasts (CAFs), and endothelial cells (ECs) plays a critical role in tumor progression, metastasis, and therapy resistance. Disruption of the cross talk may be useful to improve the outcome of therapeutics for which limited options are available. In the current study we investigate the use of gold nanoparticles (AuNPs) as a therapeutic tool to disrupt the multicellular cross talk within the TME cells with an emphasis on inhibiting angiogenesis. We demonstrate here that AuNPs disrupt signal transduction from TME cells (CCs, CAFs, and ECs) to ECs and inhibit angiogenic phenotypes in vitro. We show that conditioned media (CM) from ovarian CCs, CAFs, or ECs themselves induce tube formation and migration of ECs in vitro. Migration of ECs is also induced when ECs are cocultured with CCs, CAFs, or ECs. In contrast, CM from the cells treated with AuNPs or cocultured cells pretreated with AuNPs demonstrate diminished effects on ECs tube formation and migration. Mechanistically, AuNPs deplete ∼95% VEGF165 from VEGF single-protein solution and remove up to ∼45% of VEGF165 from CM, which is reflected on reduced activation of VEGF-Receptor 2 (VEGFR2) as compared to control CM. These results demonstrate that AuNPs inhibit angiogenesis via blockade of VEGF-VEGFR2 signaling from TME cells to endothelial cells.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neovascularização Patológica/terapia , Neoplasias Ovarianas/terapia , Microambiente Tumoral , Movimento Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
FASEB J ; 32(8): 4145-4157, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29494264

RESUMO

Deregulation of mitochondrial morphogenesis, a dynamic equilibrium between mitochondrial fusion and fission processes, is now evolving as a key metabolic event that fuels tumor growth and therapy resistance. However, fundamental knowledge underpinning how cancer cells reprogram mitochondrial morphogenesis remains incomplete. Here, we report that cystathionine ß-synthase (CBS) reprograms mitochondrial morphogenesis in ovarian cancer (OvCa) cells by selectively regulating the stability of mitofusin 2 (MFN2). Clinically, high expression of both CBS and MFN2 implicates poor overall survival of OvCa patients, and a significant association between CBS and MFN2 expression exists in individual patients in the same data set. The silencing of CBS by small interfering RNA or inhibition of its catalytic activity by a small molecule inhibitor creates oxidative stress that activates JNK. Activated JNK phosphorylates MFN2 to recruit homologous to the E6-AP carboxyl terminus' domain-containing ubiquitin E3 ligase for its degradation via the ubiquitin-proteasome system. Supplementation with hydrogen sulfide or glutathione (the catalytic products of CBS enzymatic activity), anti-oxidants, or a JNK inhibitor restores MFN2 expression. In CBS-silenced orthotopic xenograft tumor tissues, MFN2 but not MFN1 is selectively downregulated. In summary, this report reveals a role for deregulated mitochondrial morphogenesis in OvCa, suggests one of the mechanisms for this deregulation, and provides a way to correct it through modulation of the metabolic enzyme CBS.-Chakraborty, P. K., Murphy, B., Mustafi, S. B., Dey, A., Xiong, X., Rao, G., Naz, S., Zhang, M., Yang, D., Dhanasekaran, D. N., Bhattacharya, R., Mukherjee, P. Cystathionine ß-synthase regulates mitochondrial morphogenesis in ovarian cancer.


Assuntos
Cistationina beta-Sintase/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Oxidativo/fisiologia
12.
Biochem Biophys Res Commun ; 471(1): 41-6, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26850854

RESUMO

Benign prostatic hyperplasia (BPH) is a common disease in older men that involves the enlargement of the prostate gland. This occurs in response to signal transduction initiated by α-adrenergic receptors (α-ARs). When bound to ligands, α-ARs stimulate the mitogenic extracellular signal-regulated kinases 1 and 2 (ERK) pathway, ultimately promoting stromal and epithelial cell hyperplasia in the prostate. Current knowledge of how α-ARs promote prostate cell growth remains incomplete, and despite decades of research, there is no cure for BPH. In this study, we aimed to exploit an in vitro model system of BPH in order to better understand the mechanisms of α-AR signaling in prostatic hyperplasia.


Assuntos
Arrestinas/metabolismo , Sistema de Sinalização das MAP Quinases , Hiperplasia Prostática/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Transdução de Sinais , Idoso , Linhagem Celular , Humanos , Masculino , beta-Arrestinas
13.
Redox Biol ; 68: 102958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948927

RESUMO

Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.


Assuntos
Envelhecimento , Astrócitos , Encéfalo , Cistationina beta-Sintase , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo
14.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
15.
NPJ Precis Oncol ; 6(1): 93, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543867

RESUMO

The ubiquitin-specific peptidase 10 (USP10) plays a context-specific, pro or anti-tumorigenic role in different malignancies. However, the role of USP10 in pancreatic cancer remains unclear. Our protein and RNA level analysis from archived specimens and public databases show that USP10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and expression correlates with poor overall patient survival. Phenotypically, silencing USP10 decreased viability, clonal growth and invasive properties of pancreatic cancer cells. Mechanistically, silencing USP10 upregulated BiP and induced endoplasmic reticulum (ER) stress that led to an unfolded protein response (UPR) and upregulation of PERK, IRE1α. Decreased cell viability of USP10 silenced cells could be rescued by a chemical chaperone that promotes protein folding. Our studies suggest that USP10 by protecting pancreatic cancer cells from ER stress may support tumor progression.

16.
Adv Sci (Weinh) ; 9(31): e2200491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36104215

RESUMO

By exploiting the self-therapeutic properties of gold nanoparticles (GNPs) a molecular axis that promotes the growth of high-grade serous ovarian cancer (HGSOC), one of the deadliest gynecologic malignancies with poorly understood underlying molecular mechanisms, has been identified. The biodistribution and toxicity of GNPs administered by intravenous or intraperitoneal injection, both as a single dose or by repeated dosing over two weeks are first assessed; no biochemical or histological toxicity to vital organs is found. Using an orthotopic patient-derived xenograft (PDX) model of HGSOC, the authors then show that GNP treatment robustly inhibits tumor growth. Investigating the molecular mechanisms underlying the GNP efficacy reveals that GNPs downregulate insulin growth factor binding protein 2 (IGFBP2) by disrupting its autoregulation via the IGFBP2/mTOR/PTEN axis. This mechanism is validated by treating a cell line-based human xenograft tumor with GNPs and an mTOR dual-kinase inhibitor (PI-103), either individually or in combination with GNPs; GNP and PI-103 combination therapy inhibit ovarian tumor growth similarly to GNPs alone. This report illustrates how the self-therapeutic properties of GNPs can be exploited as a discovery tool to identify a critical signaling axis responsible for poor prognosis in ovarian cancer and provides an opportunity to interrogate the axis to improve patient outcomes.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Feminino , Humanos , Ouro/química , Insulina , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , PTEN Fosfo-Hidrolase , Distribuição Tecidual , Serina-Treonina Quinases TOR , Animais
17.
J Pharmacol Exp Ther ; 336(1): 206-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20876229

RESUMO

We have previously demonstrated that resveratrol (Resv)-induced cellular apoptosis occurs after formation of reactive oxygen species (ROS) but the role of GSH has not been well defined. Our experimental data enumerated that Resv treatment (50 µm) induced apoptosis in human leukemic monocyte lymphoma cells, which was preceded by cellular GSH efflux. High concentration of extracellular thiol (GSH, N-acetyl cysteine) and two specific inhibitors of carrier-mediated GSH extrusion, methionine or cystathionine, prevented the process of oxidative burst and cell death. This proved that GSH efflux could be a major molecular switch to modulate Resv-induced ROS generation. Spectrofluorometric data depicted that after 6 h of Resv treatment, ROS generation was evident. Pretreatment of cells with intracellular ROS scavenger (polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase) efficiently reduced ROS generation but failed to prevent intracellular GSH depletion. Thus, it suggested that intracellular GSH depletion was independent of ROS production but dependent on GSH extrusion. Furthermore, to bridge the link between GSH efflux and ROS generation, we carried out confocal microscopy of the localization of Bax protein. Microscopic analysis and small interfering RNA treatment emphasized that cellular GSH efflux triggered Bax translocation to mitochondria, which resulted in the loss of mitochondrial membrane potential, ROS generation, and caspase 3 activation and thus triggered apoptosis.


Assuntos
Apoptose/fisiologia , Glutationa/metabolismo , Líquido Intracelular/metabolismo , Mitocôndrias/metabolismo , Estilbenos/farmacologia , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Líquido Intracelular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Resveratrol , Células U937
18.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802524

RESUMO

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.

19.
Bioact Mater ; 6(2): 326-332, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32954051

RESUMO

Cancer-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment (TME) and an important contributor to cancer progression and therapeutic resistance. Regulation of CAF activation is a promising strategy to influence cancer outcomes. Here, we report that ovarian cancer cells (OCs) and TME cells promote the activation of ovarian CAFs, whereas gold nanoparticles (GNPs) of 20 nm in diameter inhibit the activation, as demonstrated by the changes in cell morphology, migration, and molecular markers. GNPs exert the effect by altering the levels of multiple fibroblast activation or inactivation proteins, such as TGF-ß1, PDGF, uPA and TSP1, secreted by OCs and TME cells. Thus, GNPs represent a potential tool to help understand multicellular communications existing in the TME as well as devise strategies to disrupt the communication.

20.
J Pharmacol Exp Ther ; 334(2): 381-94, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484155

RESUMO

Stomach ulceration is a major side effect of most chemopreventive drugs. We have established that although resveratrol is a promising chemopreventive compound, it delays the ulcer healing process. However, its analog hydroxystilbene-1 (HST-1) was devoid of such an ulcerogenic side effect. Consequently, here we tried to explore the chemopreventive efficacy of HST-1 compared with resveratrol in different cancer cell lines and identified the probable signaling pathways responsible for cell death. Our cell viability study established that HST-1, compared with resveratrol, showed better chemopreventive potential in all of the cell lines tested, with U937 and MCF-7 being the cells most affected. Furthermore, in U937 and MCF-7 cell lines, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, cell cycle analysis, and nuclear fragmentation by confocal microscopy established that both HST-1 and resveratrol switched on the apoptotic death cascade to execute cell death. The initiator signal was Fas-independent but synchronized in terms of cytosolic Ca(2+) influx, dissipation of mitochondrial membrane potential, and oxidative burst. It is noteworthy that the executioner signal was cell-specific as in U937 cells; HST-1 and resveratrol treatment induced mitochondrial permealization followed by cardiolipin depletion and cytochrome c release, which eventually activated downstream caspases 9 and 3 to execute the death process. In contrast, in MCF-7 cells the death process was executed in a caspase-independent but calpain-dependent manner as calpain activation induced cleavage of cytosolic alpha-fodrin, stimulated mitochondrial release of apoptotic inducing factor and endonuclease G, and thus harmonized cytosolic and mitochondrial death signals to accomplish apoptosis.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Calpaína/fisiologia , Caspases/fisiologia , Estilbenos/farmacologia , Apoptose/fisiologia , Cálcio/metabolismo , Cardiolipinas/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citosol/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Resveratrol , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa