RESUMO
Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.
Assuntos
Anticorpos Antivirais , Herpesvirus Humano 4 , Hidrocortisona , Linfócitos , Células Mieloides , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores/sangue , Estudos Transversais , Herpesvirus Humano 4/imunologia , Hidrocortisona/sangue , Imunofenotipagem , Linfócitos/imunologia , Aprendizado de Máquina , Células Mieloides/imunologia , Síndrome de COVID-19 Pós-Aguda/diagnóstico , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/fisiopatologia , Síndrome de COVID-19 Pós-Aguda/virologia , SARS-CoV-2/imunologiaRESUMO
Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Adulto , Humanos , Anticorpos , Vacinação , Epitopos , RNA Mensageiro/genética , SARS-CoV-2 , Vacinas de mRNARESUMO
BACKGROUND: Combining an immune checkpoint inhibitor with a tumor vaccine may modulate the immune system to leverage complementary mechanisms of action that lead to sustained T-cell activation and a potent prolonged immunotherapeutic response in metastatic castration resistant prostate cancer (mCRPC). METHODS: Subjects with asymptomatic or minimally symptomatic mCRPC were randomly assigned in a 1:1 ratio to receive either atezolizumab followed by sipuleucel-T (Arm 1) or sipuleucel-T followed by atezolizumab (Arm 2). The primary endpoint was safety, while secondary endpoints included preliminary clinical activity such as objective tumor response and systemic immune responses that could identify key molecular and immunological changes associated with sequential administration of atezolizumab and sipuleucel-T. RESULTS: A total of 37 subjects were enrolled. The median age was 75.0 years, median prostate specific antigen (PSA) was 21.9 ng/mL, and subjects had a median number of three prior treatments. Most subjects (83.8%) had at least one treatment-related adverse event. There were no grade 4 or 5 toxicities attributed to either study drug. Immune-related adverse events and infusion reactions occurred in 13.5% of subjects, and all of which were grade 1 or 2. Of 23 subjects with Response Evaluation Criteria in Solid Tumors measurable disease, only one subject in Arm 2 had a partial response (PR) and four subjects overall had stable disease (SD) at 6 months reflecting an objective response rate of 4.3% and a disease control rate of 21.7%. T-cell receptor diversity was higher in subjects with a response, including SD. Immune response to three novel putative antigens (SIK3, KDM1A/LSD1, and PIK3R6) appeared to increase with treatment. CONCLUSIONS: Overall, regardless of the order in which they were administered, the combination of atezolizumab with sipuleucel-T appears to be safe and well tolerated with a comparable safety profile to each agent administered as monotherapy. Correlative immune studies may suggest the combination to be beneficial; however, further studies are needed. TRIAL REGISTRATION NUMBER: NCT03024216.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Esquema de Medicação , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Extratos de Tecidos/administração & dosagemRESUMO
As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.