Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hum Mol Genet ; 32(17): 2704-2716, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37369005

RESUMO

Engineering single base edits using CRISPR technology including specific deaminases and single-guide RNA (sgRNA) is a rapidly evolving field. Different types of base edits can be constructed, with cytidine base editors (CBEs) facilitating transition of C-to-T variants, adenine base editors (ABEs) enabling transition of A-to-G variants, C-to-G transversion base editors (CGBEs) and recently adenine transversion editors (AYBE) that create A-to-C and A-to-T variants. The base-editing machine learning algorithm BE-Hive predicts which sgRNA and base editor combinations have the strongest likelihood of achieving desired base edits. We have used BE-Hive and TP53 mutation data from The Cancer Genome Atlas (TCGA) ovarian cancer cohort to predict which mutations can be engineered, or reverted to wild-type (WT) sequence, using CBEs, ABEs or CGBEs. We have developed and automated a ranking system to assist in selecting optimally designed sgRNA that considers the presence of a suitable protospacer adjacent motif (PAM), the frequency of predicted bystander edits, editing efficiency and target base change. We have generated single constructs containing ABE or CBE editing machinery, an sgRNA cloning backbone and an enhanced green fluorescent protein tag (EGFP), removing the need for co-transfection of multiple plasmids. We have tested our ranking system and new plasmid constructs to engineer the p53 mutants Y220C, R282W and R248Q into WT p53 cells and shown that these mutants cannot activate four p53 target genes, mimicking the behaviour of endogenous p53 mutations. This field will continue to rapidly progress, requiring new strategies such as we propose to ensure desired base-editing outcomes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linhagem Celular , Adenina/metabolismo , Citosina/metabolismo
2.
Cell Mol Life Sci ; 78(3): 1011-1027, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32458023

RESUMO

Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445211

RESUMO

Several poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are now in clinical use for tumours with defects in BReast CAncer genes BRCA1 or BRCA2 that result in deficient homologous recombination repair (HRR). Use of olaparib, niraparib or rucaparib for the treatment of high-grade serous ovarian cancer, including in the maintenance setting, has extended both progression free and overall survival for women with this malignancy. While different PARP inhibitors (PARPis) are mechanistically similar, differences are apparent in their chemical structures, toxicity profiles, PARP trapping abilities and polypharmacological landscapes. We have treated ovarian cancer cell line models of known BRCA status, including the paired cell lines PEO1 and PEO4, and UWB1.289 and UWB1.289+BRCA1, with five PARPis (olaparib, niraparib, rucaparib, talazoparib and veliparib) and observed differences between PARPis in both cell viability and cell survival. A cell line model of acquired resistance to veliparib showed increased resistance to the other four PARPis tested, suggesting that acquired resistance to one PARPi may not be able to be rescued by another. Lastly, as a proof of principle, HRR proficient ovarian cancer cells were sensitised to PARPis by depletion of BRCA1. In the future, guidelines will need to emerge to assist clinicians in matching specific PARPis to specific patients and tumours.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Modelos Biológicos , Mutação , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
4.
Hum Mol Genet ; 25(24): 5460-5471, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798111

RESUMO

Enzymatic factors driving cancer-associated chromatin remodelling are of increasing interest as the role of the cancer epigenome in gene expression and DNA repair processes becomes elucidated. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) is a central histone modification that functions in histone cross-talk, transcriptional elongation, DNA repair, maintaining centromeric chromatin and replication-dependent histone mRNA 3'-end processing, as well as being required for the differentiation of stem cells. The loss of global H2Bub1 is seen in a number of aggressive malignancies and has been linked to tumour progression and/or a poorer prognosis in some cancers. Here, we analyse a large cohort of high-grade serous ovarian cancers (HGSOC) and show loss of global H2Bub1 in 77% (313 of 407) of tumours. Loss of H2Bub1 was seen at all stages (I-IV) of HGSOC, indicating it is a relatively early epigenomic event in this aggressive malignancy. Manipulation of key H2Bub1 E3 ubiquitin ligases, RNF20, RNF40 and BRCA1, in ovarian cancer cell line models modulated H2Bub1 levels, indicative of the role of these RING finger ligases in monoubiquitination of H2Bub1 in vitro. However, in primary HGSOC, loss of RNF20 protein expression was identified in just 6% of tumours (26 of 424) and did not correlate with global H2Bub1 loss. Similarly, germline mutation of BRCA1 did not show a correlation with the global H2Bub1 loss. We conclude that the regulation of tumour-associated H2Bub1 levels is complex. Aberrant expression of alternative histone-associated 'writer' or 'eraser' enzymes are likely responsible for the global loss of H2Bub1 seen in HGSOC.


Assuntos
Proteína BRCA1/genética , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitinação/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA1/biossíntese , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Código das Histonas/genética , Histonas/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Ubiquitina-Proteína Ligases/genética
5.
Cancer Cell ; 11(5): 431-45, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17482133

RESUMO

Systemic administration of chemotherapeutic agents results in indiscriminate drug distribution and severe toxicity. Here we report a technology potentially overcoming these shortcomings through encapsulation and cancer cell-specific targeting of chemotherapeutics in bacterially derived 400 nm minicells. We discovered that minicells can be packaged with therapeutically significant concentrations of chemotherapeutics of differing charge, hydrophobicity, and solubility. Targeting of minicells via bispecific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release. This affects highly significant tumor growth inhibition and regression in mouse xenografts and case studies of lymphoma in dogs despite administration of minute amounts of drug and antibody; a factor critical for limiting systemic toxicity that should allow the use of complex regimens of combination chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Bactérias , Sistemas de Liberação de Medicamentos , Animais , Anticorpos/administração & dosagem , Linhagem Celular Tumoral , Cães , Composição de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Suínos
6.
Hum Mol Genet ; 21(3): 559-68, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22021426

RESUMO

Monoubiquitination of histone H2B is a dynamic post-translational histone modification associated with transcriptional elongation and the DNA damage response. To date, dysregulation of histone monoubiquitination has not been linked to pathogenic mutations in genes encoding proteins, or co-factors, catalyzing this modification. The tumor suppressor cell division cycle 73 (CDC73) is mutated and/or down-regulated in parathyroid carcinoma, renal, breast, gastric and colorectal tumors, as well as in the germline of patients with the familial disorder-hyperparathyroidism jaw tumor syndrome. Using CDC73 as bait in a yeast two-hybrid assay, we identified the ring finger proteins RNF20 and RNF40 as binding partners of this tumor suppressor. These polypeptides constitute a heterodimeric complex that functions as the E3 ubiquitin ligase for monoubiquitination of histone H2B at lysine 120 (H2B-K120). We show that RNF20 and RNF40 bind to discrete, but closely located, residues on CDC73. Monoubiquitinated H2B-K120 was significantly reduced after loss of nuclear CDC73, both in vitro upon down-regulation of CDC73, and in CDC73 mutant parathyroid tumors. A second histone modification, trimethylation of histone 3 at lysine 4 (H3-K4me3), remained unchanged in the presence of mutant or down-regulated CDC73, suggesting that H3-K4me3 is not always tightly linked to H2B-K120 monoubiquitination for transcription as previously described. This is the first report of pathogenic mutations affecting histone monoubiquitination. We conclude that CDC73 is required for the maintenance of H2B-K120 monoubiquitination and propose that reduction in levels of monoubiquitinated H2B-K120 is a major mechanism whereby mutations in CDC73 exert their tumorigenic effect.


Assuntos
Histonas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células HEK293 , Humanos , Ligação Proteica , Proteínas Supressoras de Tumor/química
7.
Cancer Lett ; 605: 217282, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369768

RESUMO

Genetic mutations and epigenetic modifications affecting multiple cancer-related genes occur synergistically to drive tumorigenesis. Across a wide spectrum of cancers, pathogenic changes have been identified in members of the SWItch/Sucrose Non-Fermentable complex including its two catalytic subunits, SMARCA4 and SMARCA2. During cancer development, it is not uncommon to lose the function of either SMARCA4 or SMARCA2, however, loss of both together has been reported to be synthetic lethal and therefore unexpected. Co-deficiency of SMARCA4 and SMARCA2 occurs as a pathognomonic feature of the early-onset ovarian cancer Small-cell carcinoma of the ovary, hypercalcemic type. The loss of both catalytic subunits is also described in other rare undifferentiated neoplasms including Thoracic SMARCA4-deficient undifferentiated tumors, Malignant rhabdoid tumors and dedifferentiated or undifferentiated carcinomas, predominantly of lung, gastrointestinal, and endometrial origin. This review provides the first extensive characterization of cancers with concurrent SMARCA4 and SMARCA2 loss through the discussion of shared clinical and molecular features. Further, we discuss the mechanisms triggering the loss of catalytic activity, the cellular processes that are dysfunctional as a consequence, and finally, current therapeutic candidates which may selectively target these cancers.

8.
Cancers (Basel) ; 16(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39272926

RESUMO

SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.

9.
Front Bioeng Biotechnol ; 10: 836984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223797

RESUMO

Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.

10.
Cancers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230543

RESUMO

The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.

11.
Pharmaceutics ; 14(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456672

RESUMO

The non-canonical Wnt signalling receptor ROR1 is aberrantly expressed in numerous cancers, including ovarian and endometrial cancer. We previously reported that silencing ROR1 could inhibit the proliferation and metastatic potential of ovarian and endometrial cancer cells in vitro. Zilovertamab is an ROR1-targeting humanised monoclonal antibody, with demonstrated safety and efficacy in clinical trials of several ROR1-related malignancies. The aim of this study was to investigate the potential of zilovertamab alone, or in combination with commonly utilised gynaecological cancer therapies (cisplatin, paclitaxel and the PARP inhibitor-Olaparib) on high-grade serous ovarian cancer (HGSOC), including models of platinum resistance and homologous recombination deficiency (CaOV3, CaOV3CisR, PEO1 and PEO4) and endometrial cancer (EC) cell lines (Ishikawa and KLE). The effect of zilovertamab (at 25 µg/mL or 50 µg/mL) +/- agents was investigated using the IncuCyte S3 Live Cell imaging system. Zilovertamab alone inhibited the proliferation of HGSOC and EC cells in vitro, including in models of platinum resistance and homologous recombination deficiency. In general, the addition of commonly used chemotherapies to a fixed dose of zilovertamab did not enhance the observed anti-proliferative activity. This study supports the potential of zilovertamab, or other ROR1-targeting therapies, for treating women with HGSOC and EC.

12.
J Mater Chem B ; 9(44): 9123-9135, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34676865

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynaecological malignancy. Most patients are diagnosed at late stages when the tumour has metastasised throughout the peritoneal cavity. The Wnt receptor ROR2 has been identified as a promising therapeutic target in HGSOC, with limited targeting therapeutic options currently available. Small interfering RNA (siRNA)-based therapeutics hold great potential for inhibiting the function of specific biomarkers, however major challenges remain in efficient delivery and stability. The aim of this study was to investigate the ability of nanoparticles to deliver ROR2 siRNA into HGSOC cells, including platinum resistant models, and estimate the anti-metastatic effect via a 3D organotypic model for ovarian cancer. The nanoparticles were generated by conjugating poly[2-(dimethylamino) ethyl methacrylate] (PDMAEMA) of various chain length to bovine serum albumin (BSA), followed by the condensation of ROR2 siRNA into polyplexes, also termed polyion complex (PIC) nanoparticles. The toxicity and uptake of ROR2 siRNA PIC nanoparticles in two HGSOC cell lines, CaOV3 as well as its cisplatin resistant pair (CaOV3CisR), in addition to primary cells used for the 3D organotypic model were investigated. ROR2 knockdown at both transcriptional and translational levels were evaluated via real-time PCR and western blot analysis, respectively. Following 24 h incubation with the nanoparticles, functional assays were performed including proliferation (IncuCyte S3), transwell migration and 3D co-cultured transwell invasion assays. The PICs nanoparticles exhibited negligible toxicity in the paired CaOV3 cell lines or primary cells. Treating CaOV3 and CaOV3CisR cells with ROR2 siRNA containing PICs nanoparticles significantly inhibited migration and invasion ability. The biocompatible ROR2 siRNA conjugated PICs nanoparticles provide an innovative therapeutic option. ROR2 targeting therapy shows potential in treating HGSOC including platinum resistant forms.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metacrilatos/química , Nylons/química , RNA Interferente Pequeno/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
13.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233707

RESUMO

Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.

14.
Genes (Basel) ; 10(1)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669413

RESUMO

There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of thePolycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.


Assuntos
Histonas/metabolismo , Neoplasias/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Ubiquitinação
15.
Sci Data ; 4: 170120, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872635

RESUMO

Somatic mutation of the tumor suppressor gene TP53 is reported in at least 50% of human malignancies. Most high-grade serous ovarian cancers (HGSC) have a mutant TP53 allele. Accurate detection of these mutants in heterogeneous tumor tissue is paramount as therapies emerge to target mutant p53. We used a Fluidigm Access Array™ System with Massively Parallel Sequencing (MPS) to analyze DNA extracted from 76 serous ovarian tumors. This dataset has been made available to researchers through the European Genome-phenome Archive (EGA; EGAS00001002200). Herein, we present analyses of this dataset using HaplotypeCaller and MuTect2 through the Broad Institute's Genome Analysis Toolkit (GATK). We anticipate that this TP53 mutation dataset will be useful to researchers developing and testing new software to accurately determine high and low frequency variant alleles in heterogeneous aneuploid tumor tissue. Furthermore, the analysis pipeline we present provides a valuable framework for determining somatic variants more broadly in tumor tissue.


Assuntos
Genes p53 , Mutação , Neoplasias Ovarianas/genética , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
16.
J Pharm Sci ; 105(12): 3615-3625, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27776769

RESUMO

Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by 1H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules.


Assuntos
Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Preparações Farmacêuticas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Células HEK293 , Humanos , Substâncias Macromoleculares/química , Memantina/metabolismo , Preparações Farmacêuticas/química , Proflavina/química , Proflavina/metabolismo , Compostos de Amônio Quaternário/química
17.
Sci Rep ; 6: 26191, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189670

RESUMO

The tumour suppressor p53 is mutated in cancer, including over 96% of high-grade serous ovarian cancer (HGSOC). Mutations cause loss of wild-type p53 function due to either gain of abnormal function of mutant p53 (mutp53), or absent to low mutp53. Massively parallel sequencing (MPS) enables increased accuracy of detection of somatic variants in heterogeneous tumours. We used MPS and immunohistochemistry (IHC) to characterise HGSOCs for TP53 mutation and p53 expression. TP53 mutation was identified in 94% (68/72) of HGSOCs, 62% of which were missense. Missense mutations demonstrated high p53 by IHC, as did 35% (9/26) of non-missense mutations. Low p53 was seen by IHC in 62% of HGSOC associated with non-missense mutations. Most wild-type TP53 tumours (75%, 6/8) displayed intermediate p53 levels. The overall sensitivity of detecting a TP53 mutation based on classification as 'Low', 'Intermediate' or 'High' for p53 IHC was 99%, with a specificity of 75%. We suggest p53 IHC can be used as a surrogate marker of TP53 mutation in HGSOC; however, this will result in misclassification of a proportion of TP53 wild-type and mutant tumours. Therapeutic targeting of mutp53 will require knowledge of both TP53 mutations and mutp53 expression.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa