RESUMO
Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.
Assuntos
Iodetos , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Força AtômicaRESUMO
Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFe12O19) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles' properties. Second, the iron-to-barium ratio (Fe/Ba = r) was varied between 2 and 12. Vibrating sample magnetometry, scanning electron microscopy and X-ray diffraction were used for characterization. A considerable influence of the calcination temperature (Tcal) was found on the resulting magnetic properties, with a decrease in coercivity (HC) from values above 370 kA/m for Tcal = 800-1000 °C to HC = 45-70 kA/m for Tcal = 1200 °C. We attribute this drop in HC mainly to the formation of entirely multi-domain particles at high Tcal. For the varying Fe/Ba ratios, increasing amounts of BaFe2O4 as an additional phase were detected by XRD in the small r (barium surplus) samples, lowering the particles' magnetization. A decrease in HC was found in the increased r samples. Crystal size ranged from 47 nm to 240 nm and large agglomerates were seen in SEM images. The reported particles, due to their controllable coercivity, can be a candidate for extracorporeal heating applications in the biomedical or biotechnological field.
RESUMO
Embedding quantum dots into porous matrices is a very beneficial approach for generating hybrid nanostructures with unique properties. In this contribution we explore strategies to dope nanoporous SiO2 thin films made by atomic layer deposition and selective wet chemical etching with precise control over pore size with CdSe quantum dots. Two distinct strategies were employed for quantum dot deposition: in situ growth of CdSe nanocrystals within the porous matrix via successive ionic layer adsorption reaction, and infiltration of pre-synthesized quantum dots. To address the impact of pore size, layers with 10 nm and 30 nm maximum pore diameter were used as the matrix. Our results show that though small pores are potentially accessible for the in situ approach, this strategy lacks controllability over the nanocrystal quality and size distribution. To dope layers with high-quality quantum dots with well-defined size distribution and optical properties, infiltration of preformed quantum dots is much more promising. It was observed that due to higher pore volume, 30 nm porous silica shows higher loading after treatment than the 10 nm porous silica matrix. This can be related to a better accessibility of the pores with higher pore size. The amount of infiltrated quantum dots can be influenced via drop-casting of additional solvents on a pre-drop-casted porous matrix as well as via varying the soaking time of a porous matrix in a quantum dot solution. Luminescent quantum dots deposited via this strategy keep their luminescent properties, and the resulting thin films with immobilized quantum dots are suited for integration into optoelectronic devices.
RESUMO
Memristors, since their inception, have demonstrated remarkable characteristics, notably the exceptional reconfigurability of their memory. This study delves into electroforming-free YMnO3 (YMO)-based resistive switches, emphasizing the reconfigurable memory effect in multiferroic YMO thin films with metallically conducting electrodes and their pivotal role in achieving adaptable frequency responses in impedance circuits consisting of reconfigurable YMO-based resistive switches and no reconfigurable passive elements, e.g., inductors and capacitors. The multiferroic YMO possesses a network of charged domain walls which can be reconfigured by a time-dependent voltage applied between the metallically conducting electrodes. Through experimental demonstrations, this study scrutinizes the impedance response not only for individual switch devices but also for impedance circuitry based on YMO resistive switches in both low- and high-resistance states, interfacing with capacitors and inductors in parallel and series configurations. Scrutinized Nyquist plots visually capture the intricate dynamics of impedance circuitry, revealing the potential of electroforming-free YMO resistive switches in finely tuning frequency responses within impedance circuits. This adaptability, rooted in the unique properties of YMO, signifies a paradigm shift heralding the advent of advanced and flexible electronic technologies.
RESUMO
Using magnetic nanoparticles for extracorporeal magnetic heating applications in bio-medical technology allows higher external field amplitudes and thereby the utilization of particles with higher coercivities (HC). In this study, we report the synthesis and characterization of high coercivity cobalt ferrite nanoparticles following a wet co-precipitation method. Particles are characterized with magnetometry, X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy (TEM) and calorimetric measurements for the determination of their specific absorption rate (SAR). In the first series, CoxFe3-xO4 particles were synthesized with x = 1 and a structured variation of synthesis conditions, including those of the used atmosphere (O2 or N2). In the second series, particles with x = 0 to 1 were synthesized to study the influence of the cobalt fraction on the resulting magnetic and structural properties. Crystallite sizes of the resulting particles ranged between 10 and 18 nm, while maximum coercivities at room temperatures of 60 kA/m for synthesis with O2 and 37 kA/m for N2 were reached. Magnetization values at room temperature and 2 T (MRT,2T) up to 60 Am2/kg under N2 for x = 1 can be achieved. Synthesis parameters that lead to the formation of an additional phase when they exceed specific thresholds have been identified. Based on XRD findings, the direct correlation between high-field magnetization, the fraction of this antiferromagnetic byphase and the estimated transition temperature of this byphase, extracted from the Mössbauer spectroscopy series, we were able to attribute this contribution to akageneite. When varying the cobalt fraction x, a non-monotonous correlation of HC and x was found, with a linear increase of HC up to x = 0.8 and a decrease for x > 0.8, while magnetometry and in-field Mössbauer experiments demonstrated a moderate degree of spin canting for all x, yielding high magnetization. SAR values up to 480 W/g (@290 kHz, 69 mT) were measured for immobilized particles with x = 0.3, whit the external field amplitude being the limiting factor due to the high coercivities of our particles.
RESUMO
Layers of aligned dyes are key to photo-driven charge separation in dye sensitized solar cells, but cannot be exploited as rectifying membranes in photocatalysis to separate half-cells because they are not sufficiently stable. While impressive work on the fabrication of stable noncovalent membranes has been recently demonstrated, these membranes are inherently suffering from non-uniform orientation of the constituting dyes. To stabilize layers made from uniformly assembled and aligned dyes, they can be covalently cross-linked via functional groups or via chromophores at the expense of their optical properties. Here stable membranes from established dyes are reported that do not need to be elaborately functionalized nor do their chromophores need to be destroyed. These membranes are free-standing, although being only non-covalently linked. To enable uniform dye-alignment, Langmuir layers made from linear, water-insoluble dyes are used. That water-soluble charge transfer dyes adsorb onto and intercalate into the Langmuir layer from the aqueous subphase, thus yielding free-standing, molecularly thin membranes are demonstrated. The developed bifacial layers consist almost entirely of π-conjugated units and thus can conduct charges and can be further engineered for optoelectronic and photocatalytic applications.
RESUMO
The physico-chemical interaction, surface, and electrical properties of hole transport layers (HTLs) significantly affect the wettability and film crystallization of the deposited perovskite and the corresponding performance of inverted perovskite solar cells (PSCs). One of the most frequently used HTLs for inverted PSCs is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Various commercial PEDOT:PSS formulations have already been tested as HTLs. Until now mixtures of these remained rather unexplored. In this study, three commercially available PEDOT:PSS formulations (PH, PH1000, and AI4083), as well as three mixtures (PH:PH1000, PH:AI4083, and PH:PH1000:AI4083; in a 1 : 1 and 1 : 1 : 1 ratios) were used as HTLs to investigate the crystallization of perovskite films and the performance of associated PSCs. Of the three formulations, PEDOT:PSS PH showed better perovskite crystallization, resulting in better solar cell performance followed by both PH:AI4083 and PH:PH1000:AI4083 layers. The pioneering work on mixing PEDOT:PSS resulted in new combinations of PEDOT:PSS, with new properties (work function, surface wettability, and roughness) which are very important parameters for perovskite crystallization and corresponding device efficiencies and stabilities. All PSCs that use the mixed PEDOT:PSS as HTLs revealed higher fill factor and open-circuit voltage values above 900 mV, which is not the same except for PEDOT:PSS PH. As a result, we believe that such a mixing strategy could aid in the creation of various PEDOT:PSS combinations with tuneable properties for certain applications.
RESUMO
The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.
RESUMO
This paper describes the preparation and obtained magnetic properties of large single domain iron oxide nanoparticles. Such ferrimagnetic particles are particularly interesting for diagnostic and therapeutic applications in medicine or (bio)technology. The particles were prepared by a modified oxidation method of non-magnetic precursors following the green rust synthesis and characterized regarding their structural and magnetic properties. For increasing preparation temperatures (5 to 85 °C), an increasing particle size in the range of 30 to 60 nm is observed. Magnetic measurements confirm a single domain ferrimagnetic behavior with a mean saturation magnetization of ca. 90 Am2/kg and a size-dependent coercivity in the range of 6 to 15 kA/m. The samples show a specific absorption rate (SAR) of up to 600 W/g, which is promising for magnetic hyperthermia application. For particle preparation temperatures above 45 °C, a non-magnetic impurity phase occurs besides the magnetic iron oxides that results in a reduced net saturation magnetization.
RESUMO
This article is intended to set the scope of the meeting, in particular, the high spatial resolution section.
Assuntos
Amiloide/ultraestrutura , Análise Espectral Raman/métodos , Sensibilidade e Especificidade , Análise de Sequência de Proteína/instrumentação , Análise de Sequência de Proteína/métodos , Análise Espectral Raman/instrumentação , Propriedades de SuperfícieRESUMO
Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.