Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Acta Oncol ; 57(6): 807-812, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29265948

RESUMO

BACKGROUND: Biliary tract cancer (BTC) is an uncommon cancer with an unfavorable prognosis. Since 2010, the standard of care for patients with unresectable BTC is palliative treatment with gemcitabine plus cisplatin, based on the landmark phase III ABC-02 trial. This current study aims to evaluate the efficacy and safety of gemcitabine and cisplatin in patients with unresectable cholangiocarcinoma and gallbladder cancer in daily practice that meet the criteria for the ABC-02 trial in comparison to patients who did not. METHODS: Patients diagnosed with unresectable BTC between 2010 and 2015 with an indication for gemcitabine and cisplatin were included. We divided these patients into three groups: (I) patients who received chemotherapy and met the criteria of the ABC-02 trial, (II) patients who received chemotherapy and did not meet these criteria and (III) patients who had an indication for chemotherapy, but received best supportive care without chemotherapy. Primary outcome was overall survival (OS) and secondary outcome was progression-free survival (PFS). RESULTS: We collected data of 208 patients, of which 138 (66.3%) patients received first line chemotherapy with gemcitabine and cisplatin. Median OS of 69 patients in group I, 63 patients in group II and 65 patients in group III was 9.6 months (95%CI = 6.7-12.5), 9.5 months (95%CI = 7.7-11.3) and 7.6 months (95%CI = 5.0-10.2), respectively. Median PFS was 6.0 months (95%CI = 4.4-7.6) in group I and 5.1 months (95%CI = 3.7-6.5) in group II. Toxicity and number of dose reductions (p = .974) were comparable between the two chemotherapy groups. CONCLUSION: First-line gemcitabine and cisplatin is an effective and safe treatment for patients with unresectable BTC who do not meet the eligibility criteria for the ABC-02 trial. Median OS, PFS and treatment side effects were comparable between the patients who received chemotherapy (group I vs. group II).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Sistema Biliar/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Neoplasias da Vesícula Biliar/tratamento farmacológico , Cuidados Paliativos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Sistema Biliar/mortalidade , Colangiocarcinoma/mortalidade , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Feminino , Neoplasias da Vesícula Biliar/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Gencitabina
2.
Front Pharmacol ; 13: 962763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016563

RESUMO

Nanomaterials are a central pillar in modern medicine. They are thought to optimize drug delivery, enhance therapeutic efficacy, and reduce side-effects. To foster this technology, analytical methods are needed to validate not only the localization and distribution of these nanomaterials, but also their compatibility with cells, drugs, and drug release. In the present work, we assessed nanoparticles based on porous silicon (pSiNPs) loaded with the clinically used tyrosine kinase inhibitor sunitinib for their effectiveness of drug delivery, release, and toxicity in colon cancer cells (HCT 116 cells) and cardiac myoblast cells (H9c2) using Raman micro-spectroscopy, high-resolution fluorescence microscopy, along with biological methods for toxicological effects. We produced pSiNPs with a size of about 100 nm by grinding mesoporous silicon layers. pSiNPs allowed an effective loading of sunitinib due to their high porosity. Photoluminescence properties of the nanoparticles within the visible spectrum allowed the visualization of their uptake in cardiac cells. Raman micro-spectroscopy allowed not only the detection of the uptake and distribution of pSiNPs within the cells via a characteristic silicon Raman band at about 518-520 cm-1, but also the localization of the drug based on its characteristic molecular fingerprints. Cytotoxicity studies by Western blot analyses of apoptotic marker proteins such as caspase-3, and the detection of apoptosis by subG1-positive cell fractions in HCT 116 and MTT analyses in H9c2 cells, suggest a sustained release of sunitinib from pSiNPs and delayed cytotoxicity of sunitinib in HCT 116 cells. The analyses in cardiac cells revealed that pSiNPs are well tolerated and that they may even protect from toxic effects in these cells to some extent. Analyses of the integrity of mitochondrial networks as an early indicator for apoptotic cellular effects seem to validate these observations. Our study suggests pSiNPs-based nanocontainers for efficient and safe drug delivery and Raman micro-spectroscopy as a reliable method for their detection and monitoring. Thus, the herein presented nanocontainers and analytical methods have the potential to allow an efficient advancement of nanoparticles for targeted and sustained intracellular drug release that is of need, e.g., in chronic diseases and for the prevention of cardiac toxicity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa