Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(13): e0016722, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695505

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne febrile disease caused by SFTS virus (SFTSV), or Dabie bandavirus, in the Phenuiviridae family. Clinically neurological disorders in SFTS have been commonly reported, but their neuropathogenesis has rarely been studied. Microglia are a type of neuroglia accounting for 10 to 12% of all cells in the brain. As resident immune cells, microglial cells are the first line of immune defense present in the central nervous system (CNS). Here, we report that SFTSV was able to infect microglial cells and stimulate interleukin 1ß (IL-1ß) secretion in the brains of infected neonatal BALB/c mice. We characterized the cell death induced in infected human microglial HMC3 cells, also susceptible to SFTSV, and found that the NOD-like receptor protein 3 (NLRP3) inflammasome was activated, leading to secretion of IL-1ß and pyroptosis. Knockdown of NLRP3 or inhibition of the NLRP3 inflammasome activation suppressed the viral replication, suggesting that the activation of the NLRP3 inflammasome may support SFTSV replication in microglial cells. Viral nonstructural protein NSs, a known modulator of immune responses, interacted and colocalized with NLRP3 for the inflammasome activation. It appeared that the N-terminal fragment, amino acids 1 to 66, of NSs was critical to promote the assembly of the inflammasome complex by interacting with NLRP3 for its activation in microglial cells. Our findings provide evidence that SFTSV may cause neurological disorders through infecting microglia and activating the inflammasome through its nonstructural protein NSs for neural cell death and inflammation. This study may have revealed a novel mechanism of SFTSV NSs in dysregulating host response. IMPORTANCE Encephalitis or encephalopathy during severe fever with thrombocytopenia syndrome (SFTS) is considered a critical risk factor leading to high mortality, but there have been no studies to date on the pathogenesis of encephalitis or encephalopathy caused by SFTS virus. Here, we report that SFTSV infection can active the NLRP3 inflammasome and induce IL-1ß secretion in the brains of infected newborn mice. In infected human HMC3 microglia, SFTSV activated the NLRP3 inflammasome via the viral nonstructural protein NSs through interaction with its N-terminal fragment. Notably, our findings suggest that the activation of the NLRP3 inflammasome may promote SFTSV replication in infected microglial cells. This study may reveal a novel mechanism by SFTSV to dysregulate host responses through its nonstructural protein, which could help us understand viral neuropathogenesis in SFTS patients.


Assuntos
Encefalite , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Phlebovirus , Piroptose , Proteínas não Estruturais Virais , Animais , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Phlebovirus/metabolismo , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Proteínas não Estruturais Virais/metabolismo
2.
Viruses ; 13(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925713

RESUMO

Viral infections are one of the leading causes in human mortality and disease. Broad-spectrum antiviral drugs are a powerful weapon against new and re-emerging viruses. However, viral resistance to existing broad-spectrum antivirals remains a challenge, which demands development of new broad-spectrum therapeutics. In this report, we showed that fludarabine, a fluorinated purine analogue, effectively inhibited infection of RNA viruses, including Zika virus, Severe fever with thrombocytopenia syndrome virus, and Enterovirus A71, with all IC50 values below 1 µM in Vero, BHK21, U251 MG, and HMC3 cells. We observed that fludarabine has shown cytotoxicity to these cells only at high doses indicating it could be safe for future clinical use if approved. In conclusion, this study suggests that fludarabine could be developed as a potential broad-spectrum anti-RNA virus therapeutic agent.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Phlebovirus/efeitos dos fármacos , Vidarabina/análogos & derivados , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Vírus de RNA/efeitos dos fármacos , Vidarabina/química , Vidarabina/farmacologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa