Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 80: 118-144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044471

RESUMO

Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.


Assuntos
Neoplasias , Polifenóis , Antocianinas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/prevenção & controle , Compostos Fitoquímicos , Polifenóis/uso terapêutico , Resveratrol
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003314

RESUMO

The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood. In this research work, the toxicity of oxidized multi-walled carbon nanotubes (Ox-MWCNTs) was measured using the freshwater bivalve (Corbicula fluminea) after exposure to different concentrations (0, 0.1, 0.2, and 0.5 mg·L-1 Ox-MWCNTs) for 14 days. The oxidized multi-walled carbon nanotubes were analyzed (pH, Raman microscopy, high-resolution electron microscopy, and dynamic light scattering), showing their properties and behavior (size, aggregation state, and structure) in water media. The antioxidant defenses in the organism's digestive gland and gills were evaluated through measuring oxidative stress enzymes (glutathione-S-transferase, catalase, and superoxide dismutase), lipid peroxidation, and total ubiquitin. The results showed a concentration-dependent response of antioxidant enzymes (CAT and GST) in both tissues (gills and digestive glands) for all exposure periods in bivalves exposed to the different concentrations of oxidized multi-walled carbon nanotubes. Lipid peroxidation (MDA content) showed a variable response with the increase in oxidized multi-walled carbon nanotubes in the gills after 7 and 14 exposure days. Overall, after 14 days, there was an increase in total Ub compared to controls. Overall, the oxidative stress observed after the exposure of Corbicula fluminea to oxidized multi-walled carbon nanotubes indicates that the discharge of these nanomaterials into aquatic ecosystems can affect the biota as well as potentially accumulate in the trophic chain, and may even put human health at risk if they ingest contaminated animals.


Assuntos
Corbicula , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Humanos , Corbicula/metabolismo , Antioxidantes/metabolismo , Nanotubos de Carbono/toxicidade , Ecossistema , Estresse Oxidativo , Glutationa Transferase/metabolismo , Água Doce , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Ecotoxicol Environ Saf ; 208: 111637, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396157

RESUMO

Polycyclic Aromatic Hydrocarbons (PAH) are a class of organic pollutants normally found as mixtures with effects often hard to predict, which poses a major challenge for risk assessment. In this study, we address the effects of Phenanthrene (Phe), benzo[b]fluoranthene (B[b]F) and their mixtures (2 Phe:1 B[b]F; 1 Phe: 1 B[b]F; 1 Phe: 2 B[b]F) over glutathione (GSH) synthesis and function in HepG2 cells. We analyzed the effects on cellular viability, ROS production, glutathione (GSH) levels, protein-S-glutathionylation (PSSG), the activity of glutathione peroxidase (GPx), glutathione-S-transferases (GST) and glutathione reductase (GR). Transcript (mRNA) levels of glutathione synthesis enzymes - glutathione cysteine ligase catalytical (GCLC) and modifying (GCLM) sub-units and glutathione synthetase (GS) - and Nrf2 translocation to the nucleus were analyzed. Phe showed a higher cytotoxicity (IC50 = 130 µM after 24 h) than B[b]F related to a higher ROS production (up-to 50% for Phe). In agreement, GSH levels were significantly increased (up-to 3-fold) by B[b]F and were accompanied by an increase in the levels of PSSG, which is a mechanism that protect proteins from oxidative damage. The upregulation of GSH was the consequence of Nrf2 signaling activation and increased levels of GCLC, GCLM and GS mRNA observed after exposure to B[b]F, but not during exposure to Phe. Most interestingly, all mixtures showed higher cytotoxicity than individual compounds, but intriguingly it was the 1 Phe: 1B[b]F mixture showing the highest cytotoxicity and ROS production. GSH levels were not significantly upregulated not even in the mixture enriched in B[b]F. These results point to the role of GSH as a central modulator of PAH toxicity and demonstrate the idiosyncratic behavior of PAH mixtures even when considering only two compounds in varying ratios.


Assuntos
Poluentes Ambientais/toxicidade , Fluorenos/toxicidade , Glutationa/biossíntese , Hepatócitos/efeitos dos fármacos , Fenantrenos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
4.
Environ Res ; 191: 110051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32818498

RESUMO

Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 µg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.


Assuntos
Anguilla , Animais , Enguias , Europa (Continente) , Humanos , Lantânio/toxicidade , Temperatura
5.
Environ Monit Assess ; 192(2): 114, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31940101

RESUMO

17ß-Estradiol (E2) is a natural estrogen produced by the feminine endocrine system. It is excreted mainly through urine and feces. Exposure to E2 may affect the reproductive system of both animals and humans, especially since the removal of E2 in conventional processes and technologies present in the wastewater treatment plants is not sufficient. Chlorine is one of the most studied and used oxidant worldwide. Although there are studies that demonstrate the endocrine disrupting compounds removal like E2, its reaction with organic matter can originate by-products, namely, trihalomethanes, which are known to have high toxic potential. The main aim of the present study was to evaluate the removal of E2 (50 µg E2 L-1-maximum concentration) using peracetic acid (PAA), a seeming cleaner and innocuous alternative to chlorine. To this end, a series of jar tests were performed, using different peracetic acid concentrations (1, 5, 10, and 15 mg L-1) and contact times (10, 15, and 20 min). The results obtained showed that a peracetic acid concentration of 15 mg L-1 with a contact time of 20 min had a removal efficacy of approximately 100%. The second main goal of this study was to evaluate the ecotoxicological potential of the tested treatments on the zebrafish Danio rerio. Several oxidative stress biomarkers were evaluated, namely glutathione S-transferase, lipid peroxidation, and catalase, besides vitellogenin. Both peracetic acid and E2 caused significant increases in the oxidative stress biomarkers, although this did not lead to increased lipid peroxidation levels. In addition, peracetic acid significantly decreased the estrogenic activity of E2, as indicated by decreased vitellogenin levels. Peracetic acid demonstrated to have great potential as an alternative disinfectant for chlorine treatments, and indications for future research are discussed.


Assuntos
Monitoramento Ambiental , Estrogênios/análise , Ácido Peracético/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Animais , Cloro , Desinfetantes , Disruptores Endócrinos/análise , Estradiol/análise , Estrona , Humanos , Trialometanos , Vitelogeninas , Águas Residuárias
6.
J Environ Sci (China) ; 89: 1-8, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892382

RESUMO

Increasing concerns have been raised on endocrine disrupting chemicals like the sex hormone 17α-ethinylestradiol (EE2), the more since traditional wastewater (WW) treatments appear to be ineffective for their removal. The efficacy of the relatively novel disinfectant peracetic acid (PAA) in EE2 removal was evaluated, as well as its potential effects on WW quality parameters. The treatments tested for EE2 removal were also evaluated in terms of toxicity, through the determination of biochemical responses (antioxidant enzymes, lipid peroxidation and vitellogenin induction) using zebrafish (Danio rerio) as a biological model. PAA contact times less than 20 min appeared insufficient regardless of the PAA dose tested, but a 100% EE2 removal was attained at a PAA concentration of 15 mg/L with a contact time of 20 min. Total suspended solids, chemical oxygen demand and pH in PAA treatments remained well within levels set in European legislation for WW discharge. EE2 induced significant increased vitellogenin (VTG) levels in both female and male fish, indicating increased estrogenic activity, especially in males suggesting an endocrine disruption effect. With the addition of PAA (15 mg/L), however, VTG levels in both sexes returned to control values. Although this PAA treatment showed increased levels of the antioxidant enzyme catalase, the lipid peroxidation levels were similar or even lower than in controls. Overall the results suggest that the use of PAA appears a promising way forward as a less toxic alternative to chlorine disinfection with high efficiency in the removal of EDC like EE2.


Assuntos
Etinilestradiol/química , Ácido Peracético/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/química , Anticoncepcionais , Estradiol , Etinilestradiol/análise , Ácido Peracético/análise , Vitelogeninas , Poluentes Químicos da Água/análise
7.
Environ Res ; 169: 7-25, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399468

RESUMO

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.


Assuntos
Perciformes , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Mudança Climática , Ecotoxicologia , Concentração de Íons de Hidrogênio
8.
Environ Res ; 170: 168-177, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583126

RESUMO

Atmospheric carbon dioxide (CO2) levels are increasing at the fastest rate ever recorded, causing higher CO2 dissolution in the ocean, leading to a process known as ocean acidification (OA). Unless anthropogenic CO2 emissions are reduced, they are expected to reach ~900 ppm by the century's end, resulting in a 0.13-0.42 drop in the seawater pH levels. Since the transgenerational effects of high CO2 in marine organisms are still poorly understood at lower levels of biological organization (namely at the biochemical level), here we reared a key ecological relevant marine amphipod, Gammarus locusta, under control and high CO2 conditions for two generations. We measured several stress-related biochemical endpoints: i) oxidative damage [lipid peroxidation (LPO) and DNA damage]; ii) protein repair and removal mechanisms [heat shock proteins (HSPs) and ubiquitin (Ub)]; as well as iii) antioxidant responses [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST)] and total antioxidant capacity (TAC). The present results support the premise that exposure to high CO2 is expected to decrease survival rates in this species and cause within- and transgenerational oxidative damage. More specifically, the predicted upsurge of reactive oxygen and nitrogen species seemed to overwhelm the stimulated amphipod antioxidant machinery, which proved insufficient in circumventing protein damage within the parents. Additionally, negative effects of OA are potentially being inherited by the offspring, since the oxidative stress imposed in the parent's proteome appears to be restricting DNA repair mechanisms efficiency within the offspring's. Thus, we argue that a transgenerational exposure of G. locusta could further increase vulnerability to OA and may endanger the fitness and sustainability of natural populations.


Assuntos
Anfípodes/fisiologia , Monitoramento Ambiental , Água do Mar/química , Animais , Dióxido de Carbono , Catalase , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo
9.
Appl Microbiol Biotechnol ; 103(7): 3073-3083, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734124

RESUMO

Microbial contamination of alcoholic fermentation processes (e.g. winemaking and fuel-ethanol production) is a serious problem for the industry since it may render the product unacceptable and/or reduce its productivity, leading to large economic losses. Brettanomyces/Dekkera bruxellensis is one of the most dangerous microbial contaminant of ethanol industrial fermentations. In the case of wine, this yeast species can produce phenolic compounds that confer off-flavours to the final product. In fuel-ethanol fermentations, D. bruxellensis is a persistent contaminant that affects ethanol yields and productivities. We recently found that Saccharomyces cerevisiae secretes a biocide, which we named saccharomycin, composed of antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Saccharomycin is active against several wine-related yeast species, namely D. bruxellensis. However, the levels of saccharomycin naturally secreted by S. cerevisiae during alcoholic fermentation are not sufficient to ensure the complete death of D. bruxellensis. Therefore, the aim of the present work was to construct genetically modified S. cerevisiae strains to overproduce these GAPDH-derived AMPs. The expression levels of the nucleotides sequences encoding the AMPs were evaluated in the modified S. cerevisiae strains by RT-qPCR, confirming the success of the recombinant approach. Furthermore, we confirmed by immunological tests that the modified S. cerevisiae strains secreted higher amounts of the AMPs by comparison with the non-modified strain, inducing total death of D. bruxellensis during alcoholic fermentations.


Assuntos
Agentes de Controle Biológico , Brettanomyces , Dekkera , Fermentação , Microbiologia de Alimentos , Saccharomyces cerevisiae/enzimologia , Etanol/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Microbiologia Industrial , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
10.
Ecotoxicology ; 27(4): 430-439, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572590

RESUMO

The mode of action for nanoparticle (NP) toxicity in aquatic organisms is not yet fully understood. In this work, a strategy other than toxicity testing was applied to Daphnia magna exposed to TiO2-NPs: the use of nuclear microscopy and the assessment of protein profile. D. magna is a keystone species broadly used as a model system in ecotoxicology. Titanium (Ti) was found in the D. magna digestive tract, mainly in the gut. The penetration of Ti into the epithelial region was greater at higher exposure levels and also observed in eggs in the brood pouch. The protein profile of individuals exposed to different concentrations showed that 2.8 and 5.6 mg/L TiO2-NP concentrations induced an over-expression of the majority of proteins, in particular proteins with molecular weight of ∼120, 85 and 15 kDa, while 11.2 mg/L TiO2-NP had an inhibitory effect on protein expression. The Matrix-assisted laser desorption ionization with tandem time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of these proteins consistently identified them as vitellogenin (Vtg)-like proteins, associated with enzymes involved in redox balance. These results indicate that Vtg-like proteins are up-regulated in D. magna exposed to TiO2-NPs. Vitellogenesis is associated with the reproduction system, suggesting that TiO2-NP exposure can impair reproduction by affecting this process. The precise mode of action of TiO2-NPs is still unclear and the results from this study are a first attempt to identify specific proteins as potential markers of TiO2-NP toxicity in D. magna, providing useful information for future research.


Assuntos
Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Artrópodes/metabolismo , Biomarcadores/metabolismo , Feminino , Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Artigo em Inglês | MEDLINE | ID: mdl-27894882

RESUMO

Knowledge of thermal stress biology for most tropical fish species in reef ecosystems under climate change is still quite limited. Thus, the objective of this study was to measure the time-course changes of thermal stress biomarkers in the commercially exploited coral reef fish Amphiprion ocellaris, during a laboratory simulated event of increased temperature. Heat shock protein 70kDa (Hsp70) and total ubiquitin (Ub) were determined in the muscle (lethal method) and in the fin (non-lethal alternative method) under two temperature treatments (control - 26°C and elevated temperature - 30°C) throughout one month with weekly samplings. Results suggest that biomarker basal levels are tissue-specific and influence the degree of response under temperature exposure. Responses were highly inducible in the muscle but not in fin tissue, indicating that the latter is not reliable for monitoring purposes. Thermal stress was observed in the muscle after one week of exposure (both biomarkers increased significantly) and Ub levels then decreased, suggesting the animals were able to acclimate by maintaining high levels of Hsp70 and through an effective protein turnover. In addition, the results show that mortality rates did not differ between treatments. This indicates that A. ocellaris is capable of displaying a plastic response to elevated temperature by adjusting the protein quality control system to protect cell functions, without decreasing survival. Thus, this coral reef fish species presents a significant acclimation potential under ocean warming scenarios of +4°C. Monitoring of thermal stress through a non-lethal method, fin-clipping, although desirable proved to be inadequate for this species.


Assuntos
Adaptação Fisiológica , Biomarcadores/metabolismo , Mudança Climática , Recifes de Corais , Perciformes/fisiologia , Clima Tropical , Animais
12.
Environ Res ; 149: 77-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179934

RESUMO

Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species - European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18°C) and to the expected ocean warming (+4°C, i.e. 22°C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1mgkg(-1) ww at 22°C against 6.2mgkg(-1) ww at 18°C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18°C to 50.3% at 22°C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change.


Assuntos
Bass/metabolismo , Exposição Ambiental , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Animais , Encéfalo/metabolismo , Mudança Climática , Monitoramento Ambiental , Temperatura Alta , Fígado/metabolismo , Mercúrio/química , Compostos de Metilmercúrio/química , Músculos/metabolismo , Portugal , Poluentes Químicos da Água/química
13.
J Biol Inorg Chem ; 20(2): 311-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25488518

RESUMO

The activity of sulfate-reducing bacteria (SRB) intensifies the problems associated to corrosion of metals and the solution entails significant economic costs. Although molybdate can be used to control the negative effects of these organisms, the mechanisms triggered in the cells exposed to Mo-excess are poorly understood. In this work, the effects of molybdate ions on the growth and morphology of the SRB Desulfovibrio alaskensis G20 (DaG20) were investigated. In addition, the cellular localization, ion uptake and regulation of protein expression were studied. We found that molybdate concentrations ranging between 50 and 150 µM produce a twofold increase in the doubling time with this effect being more significant at 200 µM molybdate (five times increase in the doubling time). It was also observed that 500 µM molybdate completely inhibits the cellular growth. On the context of protein regulation, we found that several enzymes involved in energy metabolism, cellular division and metal uptake processes were particularly influenced under the conditions tested. An overall description of some of the mechanisms involved in the DaG20 adaptation to molybdate-stress conditions is discussed.


Assuntos
Desulfovibrio/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Molibdênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/crescimento & desenvolvimento , Íons/química , Íons/metabolismo , Íons/toxicidade , Molibdênio/toxicidade
14.
J Biol Inorg Chem ; 20(6): 935-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077814

RESUMO

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Piridinas/química , Antineoplásicos/química , Apoptose , Caspase 3/genética , Complexos de Coordenação/química , Cobre/química , DNA/química , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Estresse Oxidativo , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Albumina Sérica/química , Proteína X Associada a bcl-2/genética
15.
Environ Res ; 138: 101-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704830

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are priority environmental mutagens and carcinogens that occur in the aquatic environment as mixtures rather than the individual compounds for which guidelines are issued. The present work aimed at understanding the interaction effects between carcinogenic and non-carcinogenic PAHs in a model marine fish (Dicentrarchus labrax) in realistic scenarios. Laboratory assays under ecologically-relevant parameters were conducted for 28 days with sediments spiked with low-moderate concentrations (250-800ngg(-1)) of two model PAHs, phenanthrene (non-carcinogenic) and benzo[b]fluoranthene (carcinogenic to experimental animals). Both PAHs induced hepatic histopathological changes that indicate metabolic failure and inflammation, especially in animals exposed to mixtures. Phenanthrene elicited biochemical changes better related to oxidative stress (lipid peroxidation, glutathione and glutathione S-transferase activity) and CYP function, whereas B[b]F disrupted metabolic responses and defences to toxicological challenge. Conversely, mixed PAHs yielded lesions and responses that, altogether, are compatible with the AHR dependent pathway (the basis of PAH mutagenicity), potentially generating supra-additive effects. Nonetheless, the low, ecologically-relevant, concentrations of PAHs diluted dose and time-response relations. Overall, although seemingly predicting the risk of individual PAHs, environmental guidelines may not apply to mixtures by underestimating adverse effects, which calls for a redefinition of standards when determining the true risk of toxicants under realistic circumstances.


Assuntos
Bass/metabolismo , Carcinógenos/toxicidade , Fluorenos/toxicidade , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Oxigenases de Função Mista/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
16.
Artigo em Inglês | MEDLINE | ID: mdl-25582544

RESUMO

The ability to cope with high temperature variations is a critical factor in intertidal communities. Two species of intertidal rocky shore shrimps (Palaemon sp.) with different vertical distributions were collected from the Portuguese coast in order to test if they were differentially sensitive to thermal stress. Three distinct levels of biological organization (organismal, biochemical, and cellular) were surveyed. The shrimp were exposed to a constant rate of temperature increase of 1°C x h(-1), starting at 20°C until reaching the CTMax (critical thermal maximum). During heat stress, two biomarkers of protein damage were quantified in the muscle via enzyme-linked immunosorbent assays: heat shock proteins HSP70 (hsp70/hsc70) and total ubiquitin. Muscle histopathological alterations caused by temperature were also evaluated. CTMax values were not significantly different between the congeners (P. elegans 33.4 ± 0.5 °C; P. serratus 33.0 ± 0.5 °C). Biomarker levels did not increase along the temperature trial, but P. elegans (higher intertidal) showed higher amounts of HSP70 and total ubiquitin than P. serratus (lower intertidal). HSP70 and total ubiquitin levels showed a positive significant correlation in both species, suggesting that their association is important in thermal tolerance. Histopathological observations of muscle tissue in P. serratus showed no gross alterations due to temperature but did show localized atrophy of muscle fibers at CTMax. In P. elegans, alterations occurred at a larger scale, showing multiple foci of atrophic muscular fascicles caused by necrotic or autolytic processes. In conclusion, Palaemon congeners displayed different responses to stress at a cellular level, with P. elegans having greater biomarker levels and histopathological alterations.


Assuntos
Resposta ao Choque Térmico/fisiologia , Palaemonidae/fisiologia , Animais , Biomarcadores/metabolismo , Ecossistema , Proteínas de Choque Térmico HSP70/metabolismo , Músculos/metabolismo , Músculos/patologia , Especificidade da Espécie , Temperatura , Ubiquitina/metabolismo
17.
Glob Chang Biol ; 20(10): 3068-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24771544

RESUMO

Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs).


Assuntos
Aclimatação/fisiologia , Antioxidantes/metabolismo , Mudança Climática , Crustáceos/fisiologia , Enzimas/metabolismo , Temperatura Alta , Estresse Fisiológico , Animais , Organismos Aquáticos , Crustáceos/metabolismo , Resposta ao Choque Térmico , Peroxidação de Lipídeos , Especificidade da Espécie , Simbiose
18.
Environ Res ; 135: 55-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262075

RESUMO

Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.


Assuntos
Acrilamida/toxicidade , Exposição Ambiental , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Citocromo P-450 CYP1A1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Técnicas Histológicas , Peroxidação de Lipídeos/efeitos dos fármacos , Mytilus/metabolismo , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Estatísticas não Paramétricas
19.
J Appl Toxicol ; 34(12): 1293-302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24122845

RESUMO

Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.


Assuntos
Acrilamida/toxicidade , Dano ao DNA , Carpa Dourada , Hepatopâncreas/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Animais , Ensaio Cometa , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Glutationa Transferase/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo , Hepatopâncreas/metabolismo , Hepatopâncreas/patologia , Testes para Micronúcleos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-24835486

RESUMO

Both climate change and biological invasions are among the most serious global environmental threats. Yet mechanisms underlying these eventual interactions remain unclear. The aim of this study was to undertake a comprehensive examination of the physiological and biochemical responses of native (Ruditapes decussatus) and alien-invasive (Ruditapes philippinarum) clams to environmental warming. We evaluated thermal tolerance limits (CTMax), routine metabolic rates (RMRs) and respective thermal sensitivity (Q10 values), critical oxygen partial pressure (Pcrit), heat shock response (HSP70/HSC70 levels), lipid peroxidation (MDA build-up) and antioxidant enzyme [glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD)] activities. Contrary to most studies that show that invasive species have a higher thermal tolerance than native congeners, here we revealed that the alien-invasive and native species had similar CTMax values. However, warming had a stronger effect on metabolism and oxidative status of the native R. decussatus, as indicated by the higher RMRs and HSP70/HSC70 and MDA levels, as well as GST, CAT and SOD activities. Moreover, we argue that the alien-invasive clams, instead of up-regulating energetically expensive cellular responses, have evolved a less demanding strategy to cope with short-term environmental (oxidative) stress-pervasive valve closure. Although efficient during stressful short-term periods to ensure isolation and guarantee longer survival, such adaptive behavioural strategy entails metabolic arrest (and the enhancement of anaerobic pathways), which to some extent will not be advantageous under the chronically warming conditions predicted in the future.


Assuntos
Bivalves/metabolismo , Mudança Climática , Oceanos e Mares , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Bivalves/genética , Bivalves/fisiologia , Catalase/metabolismo , Monitoramento Ambiental , Proteínas de Choque Térmico HSP70/biossíntese , Resposta ao Choque Térmico , Peroxidação de Lipídeos/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa