Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 43(3): 397-406, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19796710

RESUMO

One of the major problems in genomics and medicine is the identification of gene networks and pathways deregulated in complex and polygenic diseases, like cancer. In this paper, we address the problem of assessing the variability of results of pathways analysis identified in different and independent genome wide expression studies, in which the same phenotypic conditions are assayed. To this end, we assessed the deregulation of 1891 curated gene sets in four independent gene expression data sets of subjects affected by colorectal cancer (CRC). In this comparison we used two well-founded statistical models for evaluating deregulation of gene networks. We found that the results of pathway analysis in expression studies are highly reproducible. Our study revealed 53 pathways identified by the two methods in all the four data sets analyzed with high statistical significance and strong biological relevance with the pathology examined. This set of pathways associated to single markers as well as to whole biological processes altered constitutes a signature of the disease which sheds light on the genetics bases of CRC.


Assuntos
Neoplasias Colorretais/genética , Genoma Humano , Genômica/métodos , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Estatísticos , Reprodutibilidade dos Testes
2.
BMC Bioinformatics ; 10: 275, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19725948

RESUMO

BACKGROUND: The analysis of high-throughput gene expression data with respect to sets of genes rather than individual genes has many advantages. A variety of methods have been developed for assessing the enrichment of sets of genes with respect to differential expression. In this paper we provide a comparative study of four of these methods: Fisher's exact test, Gene Set Enrichment Analysis (GSEA), Random-Sets (RS), and Gene List Analysis with Prediction Accuracy (GLAPA). The first three methods use associative statistics, while the fourth uses predictive statistics. We first compare all four methods on simulated data sets to verify that Fisher's exact test is markedly worse than the other three approaches. We then validate the other three methods on seven real data sets with known genetic perturbations and then compare the methods on two cancer data sets where our a priori knowledge is limited. RESULTS: The simulation study highlights that none of the three method outperforms all others consistently. GSEA and RS are able to detect weak signals of deregulation and they perform differently when genes in a gene set are both differentially up and down regulated. GLAPA is more conservative and large differences between the two phenotypes are required to allow the method to detect differential deregulation in gene sets. This is due to the fact that the enrichment statistic in GLAPA is prediction error which is a stronger criteria than classical two sample statistic as used in RS and GSEA. This was reflected in the analysis on real data sets as GSEA and RS were seen to be significant for particular gene sets while GLAPA was not, suggesting a small effect size. We find that the rank of gene set enrichment induced by GLAPA is more similar to RS than GSEA. More importantly, the rankings of the three methods share significant overlap. CONCLUSION: The three methods considered in our study recover relevant gene sets known to be deregulated in the experimental conditions and pathologies analyzed. There are differences between the three methods and GSEA seems to be more consistent in finding enriched gene sets, although no method uniformly dominates over all data sets. Our analysis highlights the deep difference existing between associative and predictive methods for detecting enrichment and the use of both to better interpret results of pathway analysis. We close with suggestions for users of gene set methods.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos , Bases de Dados Genéticas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo
3.
Int J Biol Sci ; 4(6): 368-78, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18953405

RESUMO

Gene expression profiling offers a great opportunity for studying multi-factor diseases and for understanding the key role of genes in mechanisms which drive a normal cell to a cancer state. Single gene analysis is insufficient to describe the complex perturbations responsible for cancer onset, progression and invasion. A deeper understanding of the mechanisms of tumorigenesis can be reached focusing on deregulation of gene sets or pathways rather than on individual genes. We apply two known and statistically well founded methods for finding pathways and biological processes deregulated in pathological conditions by analyzing gene expression profiles. In particular, we measure the amount of deregulation and assess the statistical significance of predefined pathways belonging to a curated collection (Molecular Signature Database) in a colon cancer data set. We find that pathways strongly involved in different tumors are strictly connected with colon cancer. Moreover, our experimental results show that the study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. Our study shows the importance of using gene sets rather than single genes for understanding the main biological processes and pathways involved in colorectal cancer. Our analysis evidences that many of the genes involved in these pathways are strongly associated to colorectal tumorigenesis. In this new perspective, the focus shifts from finding differentially expressed genes to identifying biological processes, cellular functions and pathways perturbed in the phenotypic conditions by analyzing genes co-expressed in a given pathway as a whole, taking into account the possible interactions among them and, more importantly, the correlation of their expression with the phenotypical conditions.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos/genética , Idoso , Neoplasias do Colo/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa