Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Plant Physiol ; 191(3): 1884-1912, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36477336

RESUMO

Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.


Assuntos
Cicer , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Alelos , Cicer/genética , Cicer/metabolismo , Ácido Abscísico/metabolismo , Resistência à Seca , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética
4.
Heliyon ; 9(3): e14539, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967978

RESUMO

Terminal heat stress severely affects field pea production in tropical climates. Identifying and characterizing marker-trait(s) remain vital for breeding heat-tolerant cultivars of field pea. Field pea genotypes are highly variable for plant stature; however, the significance of plant stature for yield stability under high-temperature conditions is not yet well understood. The study aimed to investigate the sensitivity and significance of plant stature toward yield sustainability of field pea under high-temperature environments. A panel of 150 diverse genotypes with variable plant statures [dwarf (<50 cm), semi-dwarf (50-80 cm), medium-tall (80-150 cm)] were grown under late sowing-induced high-temperature environments for two consecutive years (2017-2019). During the first year of the experiment, the late sown crops (15 and 30 days) were exposed to high-temperatures at flowering (+3.5 to +8.1 °C) and grain-filling (+3.3 to +6.1 °C) over timely sown crops. Likewise, elevated temperature during flowering (+3.7 to +5.2 °C) and grain filling (+5.4 to +9.9 °C) were recorded in late-sown environments (delayed by 27 and 54 days) in the next year. Medium-tall genotypes had longer grain-filling duration (7-10%), higher pod-bearing nodes (8-18%) and yield (22-55%), and lower yield losses (13-18%) over semi-dwarf and dwarf genotypes under high-temperature environments. Significant associations of plant height with yield, yield loss, and heat-susceptibility index in high-temperature environments suggested higher heat tolerance capacity of tall-type plants compared to dwarf and semi-dwarf types. GGEbiplot analysis revealed that the heat-tolerant genotypes were all medium tall-type (mean = 108 cm), while the heat-susceptible genotypes were mostly dwarf in stature. Hence, tall-type genotypes had better adaptability to high-temperature environments. Henceforth, the breeding approach for high-temperature tolerance in field pea may be designed by embracing tall-type backgrounds over dwarf plant to develop climate resilient cultivars.

5.
Front Plant Sci ; 14: 1183505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229109

RESUMO

Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.

6.
Front Genet ; 13: 958780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313472

RESUMO

The development of genomic selection (GS) methods has allowed plant breeding programs to select favorable lines using genomic data before performing field trials. Improvements in genotyping technology have yielded high-dimensional genomic marker data which can be difficult to incorporate into statistical models. In this paper, we investigated the utility of applying dimensionality reduction (DR) methods as a pre-processing step for GS methods. We compared five DR methods and studied the trend in the prediction accuracies of each method as a function of the number of features retained. The effect of DR methods was studied using three models that involved the main effects of line, environment, marker, and the genotype by environment interactions. The methods were applied on a real data set containing 315 lines phenotyped in nine environments with 26,817 markers each. Regardless of the DR method and prediction model used, only a fraction of features was sufficient to achieve maximum correlation. Our results underline the usefulness of DR methods as a key pre-processing step in GS models to improve computational efficiency in the face of ever-increasing size of genomic data.

7.
Plants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961053

RESUMO

The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea (Cicer arietinum L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India. The TCGC team has been engaged in deploying modern genomics approaches in breeding and popularizing improved varieties in farmers' fields across the states. Using marker-assisted backcrossing, introgression lines with enhanced drought tolerance and fusarium wilt resistance have been developed in the genetic background of 10 elite varieties of chickpea. Multi-location evaluation of 100 improved lines (70 desi and 30 kabuli) during 2016-2017 and 2018-2019 enabled the identification of top performing desi and kabuli lines. In total, 909 Farmer Participatory Varietal Selection trials were conducted in 158 villages in 16 districts of the five states, during 2017-2018, 2018-2019, and 2019-2020, involving 16 improved varieties. New molecular breeding lines developed in different genetic backgrounds are potential candidates for national trials under the ICAR-All India Coordinated Research Project on Chickpea. The comprehensive efforts of TCGC resulted in the development and adoption of high-yielding varieties that will increase chickpea productivity and the profitability of chickpea growing farmers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa