Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Inorg Chem ; 28(5): 451-456, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37464157

RESUMO

The control of nutrient availability is an essential ecological function of the host organism in host-microbe systems. Although often overshadowed by macronutrients such as carbohydrates, micronutrient metals are known as key drivers of host-microbe interactions. The ways in which host organisms control nutrient metal availability are dictated by principles in bioinorganic chemistry. Here I ponder about the actions of metal-binding molecules from the host organism in controlling nutrient metal availability to the host microbiota. I hope that these musings will encourage new explorations into the fundamental roles of metals in the ecology of diverse host-microbe systems.


Assuntos
Metais , Nutrientes
2.
Org Biomol Chem ; 21(12): 2539-2544, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36877005

RESUMO

Copper Pyrithione, [Cu(PyS)2] has shown excellent biological activity against cancer cells and bacterial cells, however, it has extremely low aqueous solubility, limiting its applicability. Herein, we report a series of PEG-substituted pyrithione copper(II) complexes with significantly increased aqueous solubility. While long PEG chains lead to a decrease in bioactivity, the addition of short PEG chains leads to improved aqueous solubility with retention of activity. One novel complex, [Cu(PyS1)2], has particularly impressive anticancer activity, surpassing that of the parent complex.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Organometálicos , Água , Compostos Organometálicos/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Cobre/farmacologia , Complexos de Coordenação/farmacologia , Solubilidade
3.
Biochem J ; 476(3): 595-611, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30670571

RESUMO

Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.


Assuntos
Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/farmacologia , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Streptococcus pyogenes/metabolismo , Superóxido Dismutase/metabolismo , Proteínas de Bactérias/genética , Ferro/metabolismo , Estresse Oxidativo/genética , Streptococcus pyogenes/genética , Superóxido Dismutase/genética
4.
Proc Natl Acad Sci U S A ; 114(26): 6818-6823, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611214

RESUMO

Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The cueR and copA genes are encoded on the chromosome typically as a divergent but contiguous operon. In Escherichia coli, cueR and copA are separated by two additional genes, ybaS and ybaT, which confer glutamine (Gln)-dependent acid tolerance and contribute to the glutamate (Glu)-dependent acid resistance system in this organism. Here we show that Cu strongly inhibits growth of a ∆copA mutant strain in acidic cultures. We further demonstrate that Cu stress impairs the pathway for Glu biosynthesis via glutamate synthase, leading to decreased intracellular levels of Glu. Addition of exogenous Glu rescues the ∆copA mutant from Cu stress in acidic conditions. Gln is also protective but this relies on the activities of YbaS and YbaT. Notably, expression of both enzymes is up-regulated during Cu stress. These results demonstrate a link between Cu stress, acid stress, and Glu/Gln metabolism, establish a role for YbaS and YbaT in Cu tolerance, and suggest that subtle changes in core metabolic pathways may contribute to overcoming host-imposed copper toxicity.


Assuntos
Cobre/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Cobre/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Estresse Fisiológico/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-29133551

RESUMO

Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce ß-lactamases with carbapenemase activity, such as the metallo-ß-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse ß-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other ß-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 µM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Íons/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Carbapenêmicos/farmacologia , Ertapenem/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana/métodos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
6.
Nucleic Acids Res ; 44(14): 6981-93, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27307602

RESUMO

Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract diseases, must cope with a range of electrophiles generated in the host or by endogenous metabolism. Formaldehyde is one such compound that can irreversibly damage proteins and DNA through alkylation and cross-linking and interfere with redox homeostasis. Its detoxification operates under the control of HiNmlR, a protein from the MerR family that lacks a specific sensor region and does not bind metal ions. We demonstrate that HiNmlR is a thiol-dependent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine residues (Cys54 and Cys71) identified to be important for its response against a formaldehyde challenge. We obtained crystal structures of HiNmlR in both the DNA-free and two DNA-bound forms, which suggest that HiNmlR enhances target gene transcription by twisting of operator DNA sequences in a two-gene operon containing overlapping promoters. Our work provides the first structural insights into the mechanism of action of MerR regulators that lack sensor regions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Formaldeído/metabolismo , Haemophilus influenzae/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/genética , Inativação Metabólica/genética , Cinética , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373352

RESUMO

Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA (PerR-regulated metal transporter A), a P1B-4-type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448ΔpmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448ΔpmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo , Streptococcus pyogenes/enzimologia , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Estreptonigrina/farmacologia
8.
J Biol Chem ; 290(31): 18954-61, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26055706

RESUMO

Zinc (Zn) and copper (Cu) are essential for optimal innate immune function, and nutritional deficiency in either metal leads to increased susceptibility to bacterial infection. Recently, the decreased survival of bacterial pathogens with impaired Cu and/or Zn detoxification systems in phagocytes and animal models of infection has been reported. Consequently, a model has emerged in which the host utilizes Cu and/or Zn intoxication to reduce the intracellular survival of pathogens. This review describes and assesses the potential role for Cu and Zn intoxication in innate immune function and their direct bactericidal function.


Assuntos
Infecções Bacterianas/imunologia , Cobre/fisiologia , Imunidade Inata , Zinco/fisiologia , Animais , Infecções Bacterianas/microbiologia , Transporte Biológico , Interações Hospedeiro-Patógeno , Humanos
9.
FASEB J ; 29(9): 3828-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031293

RESUMO

Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species.


Assuntos
Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Nitrito Redutases/metabolismo , Proteínas Periplásmicas/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Mutação INDEL , Chaperonas Moleculares/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Nitrito Redutases/genética , Proteínas Periplásmicas/genética
10.
Antimicrob Agents Chemother ; 59(10): 6444-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239980

RESUMO

There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen.


Assuntos
Antibacterianos/toxicidade , Complexos de Coordenação/toxicidade , Cobre/toxicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Tiossemicarbazonas/toxicidade , Antibacterianos/química , Transporte Biológico , Complexos de Coordenação/química , Cobre/química , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/metabolismo , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/crescimento & desenvolvimento , Neisseria gonorrhoeae/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Tiossemicarbazonas/química
11.
J Infect Dis ; 210(8): 1311-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24737798

RESUMO

Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.


Assuntos
Colo do Útero/citologia , Células Epiteliais/microbiologia , Lactato Desidrogenases/metabolismo , Neisseria gonorrhoeae/enzimologia , Neutrófilos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Lactato Desidrogenases/genética , Mutação
12.
J Bacteriol ; 195(11): 2632-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564168

RESUMO

NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Neisseria gonorrhoeae/enzimologia , Nitrito Redutases/genética , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Colo do Útero/microbiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células Epiteliais/microbiologia , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Gonorreia/microbiologia , Humanos , Viabilidade Microbiana , Neisseria gonorrhoeae/genética , Nitrito Redutases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases/metabolismo , Oxigênio/metabolismo , Filogenia , RNA Bacteriano/genética , Rhodobacter capsulatus/genética , Deleção de Sequência
13.
Metallomics ; 15(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37849243

RESUMO

All bacteria possess homeostastic mechanisms that control the availability of micronutrient metals within the cell. Cross-talks between different metal homeostasis pathways within the same bacterial organism have been reported widely. In addition, there have been previous suggestions that some metal uptake transporters can promote adventitious uptake of the wrong metal. This work describes the cross-talk between Cu and the Zn and Mn homeostasis pathways in Group A Streptococcus (GAS). Using a ∆copA mutant strain that lacks the primary Cu efflux pump and thus traps excess Cu in the cytoplasm, we show that growth in the presence of supplemental Cu promotes downregulation of genes that contribute to Zn or Mn uptake. This effect is not associated with changes in cellular Zn or Mn levels. Co-supplementation of the culture medium with Zn or, to a lesser extent, Mn alleviates key Cu stress phenotypes, namely bacterial growth and secretion of the fermentation end-product lactate. However, neither co-supplemental Zn nor Mn influences cellular Cu levels or Cu availability in Cu-stressed cells. In addition, we provide evidence that the Zn or Mn uptake transporters in GAS do not promote Cu uptake. Together, the results from this study strengthen and extend our previous proposal that mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in GAS.


Assuntos
Cobre , Zinco , Cobre/metabolismo , Zinco/metabolismo , Streptococcus pyogenes , Metais , Homeostase , Fenótipo
14.
FEBS J ; 290(23): 5566-5580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634202

RESUMO

N-carbamoyl-ß-alanine amidohydrolase (CßAA) constitutes one of the most important groups of industrially relevant enzymes used in the production of optically pure amino acids and derivatives. In this study, a CßAA-encoding gene from Rhizobium radiobacter strain MDC 8606 was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme (RrCßAA) showed a specific activity of 14 U·mg-1 using N-carbamoyl-ß-alanine as a substrate with an optimum activity at 55 °C and pH 8.0. In this work, we report also the first prokaryotic CßAA structure at a resolution of 2.0 Å. A discontinuous catalytic domain and a dimerisation domain attached through a flexible hinge region at the domain interface have been revealed. We identify key ligand binding residues, including a conserved glutamic acid (Glu131), histidine (H385) and arginine (Arg291). Our results allowed us to explain the preference of the enzyme for linear carbamoyl substrates, as large and branched carbamoyl substrates cannot fit in the active site of the enzyme. This work envisages the use of RrCßAA from R. radiobacter MDC 8606 for the industrial production of L-α-, L-ß- and L-γ-amino acids. The structural analysis provides new insights on enzyme-substrate interaction, which shed light on engineering of CßAAs for high catalytic activity and broad substrate specificity.


Assuntos
Agrobacterium tumefaciens , Aminoácidos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , beta-Alanina , Amidoidrolases/genética , Amidoidrolases/metabolismo , Especificidade por Substrato
15.
ACS Infect Dis ; 9(3): 631-642, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36826226

RESUMO

Histatin-5 (Hst5) is a member of the histatin superfamily of cationic, His-rich, Zn(II)-binding peptides in human saliva. Hst5 displays antimicrobial activity against fungal and bacterial pathogens, often in a Zn(II)-dependent manner. In contrast, here we showed that under in vitro conditions that are characteristic of human saliva, Hst5 does not kill seven streptococcal species that normally colonize the human oral cavity and oropharynx. We further showed that Zn(II) does not influence this outcome. We then hypothesized that Hst5 exerts more subtle effects on streptococci by modulating Zn(II) availability. We initially proposed that Hst5 contributes to nutritional immunity by limiting nutrient Zn(II) availability and promoting bacterial Zn(II) starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.


Assuntos
Peptídeos Antimicrobianos , Histatinas , Proteínas e Peptídeos Salivares , Humanos , Histatinas/metabolismo , Streptococcus/metabolismo , Zinco
16.
Infect Immun ; 80(3): 1065-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22184419

RESUMO

NGO0579 is annotated copA in the Neisseria gonorrhoeae chromosome, suggesting that it encodes a cation-transporting ATPase specific for copper ions. Compared to wild-type cells, a copA mutant was more sensitive to killing by copper ions but not to other transition metals. The mutant also accumulated a greater amount of copper, consistent with the predicted role of CopA as a copper efflux pump. The copA mutant showed a reduced ability to invade and survive within human cervical epithelial cells, although its ability to form a biofilm on the surface of these cells was not significantly different from that of the wild type. In the presence of copper, the copA mutant exhibited increased sensitivity to killing by nitrite or nitric oxide. Therefore, we concluded that copper ion efflux catalyzed by CopA is linked to the nitrosative stress defense system of Neisseria gonorrhoeae. These observations suggest that copper may exert its effects as an antibacterial agent in the innate immune system via an interaction with reactive nitrogen species.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/toxicidade , Deleção de Genes , Neisseria gonorrhoeae/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Células Cultivadas , Cobre/metabolismo , Células Epiteliais/microbiologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Óxido Nítrico/toxicidade , Nitritos/toxicidade , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
mBio ; 13(3): e0043422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35604220

RESUMO

Copper (Cu) is an essential micronutrient for cells, but in excess it is cytotoxic. How Cu is cytotoxic is the subject of recent work by L. Zuily, N.


Assuntos
Antineoplásicos , Cobre , Cobre/toxicidade
18.
mBio ; 13(3): e0067622, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467425

RESUMO

The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit. IMPORTANCE During infection, microbes must escape host immune responses and survive exposure to reactive oxygen species produced by immune cells. Here, we identify the ABC transporter substrate binding protein GshT as a key component of the glutathione salvage pathway in glutathione-auxotrophic GAS. Host-acquired glutathione is crucial to the GAS antioxidant defense system, facilitating escape from the host innate immune response. This study demonstrates a direct link between glutathione assimilation, aerobic metabolism, and virulence factor production in an important human pathogen. Our findings provide mechanistic insight into host adaptation that enables extracellular bacterial pathogens such as GAS to exploit the abundance of glutathione in the host cytosol for their own benefit.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Glutationa/metabolismo , Humanos , Evasão da Resposta Imune , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Fatores de Virulência/metabolismo
19.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 337-352, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234148

RESUMO

The introduction of disulfide bonds into periplasmic proteins is a critical process in many Gram-negative bacteria. The formation and regulation of protein disulfide bonds have been linked to the production of virulence factors. Understanding the different pathways involved in this process is important in the development of strategies to disarm pathogenic bacteria. The well characterized disulfide bond-forming (DSB) proteins play a key role by introducing or isomerizing disulfide bonds between cysteines in substrate proteins. Curiously, the suppressor of copper sensitivity C proteins (ScsCs), which are part of the bacterial copper-resistance response, share structural and functional similarities with DSB oxidase and isomerase proteins, including the presence of a catalytic thioredoxin domain. However, the oxidoreductase activity of ScsC varies with its oligomerization state, which depends on a poorly conserved N-terminal domain. Here, the structure and function of Caulobacter crescentus ScsC (CcScsC) have been characterized. It is shown that CcScsC binds copper in the copper(I) form with subpicomolar affinity and that its isomerase activity is comparable to that of Escherichia coli DsbC, the prototypical dimeric bacterial isomerase. It is also reported that CcScsC functionally complements trimeric Proteus mirabilis ScsC (PmScsC) in vivo, enabling the swarming of P. mirabilis in the presence of copper. Using mass photometry and small-angle X-ray scattering (SAXS) the protein is demonstrated to be trimeric in solution, like PmScsC, and not dimeric like EcDsbC. The crystal structure of CcScsC was also determined at a resolution of 2.6 Å, confirming the trimeric state and indicating that the trimerization results from interactions between the N-terminal α-helical domains of three CcScsC protomers. The SAXS data analysis suggested that the protomers are dynamic, like those of PmScsC, and are able to sample different conformations in solution.


Assuntos
Caulobacter crescentus , Isomerases de Dissulfetos de Proteínas , Proteínas de Bactérias/química , Caulobacter crescentus/metabolismo , Cobre , Dissulfetos , Proteína C , Isomerases de Dissulfetos de Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
J Am Chem Soc ; 132(6): 2005-15, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20088522

RESUMO

CueO from Escherichia coli is a multicopper oxidase (MCO) involved in copper tolerance under aerobic conditions. It features four copper atoms that act as electron transfer (T1) and dioxygen reduction (T2, T3; trinuclear) sites. In addition, it displays a methionine-rich insert which includes a helix that blocks physical access to the T1 site and which provides an extra labile site T4 adjacent to the T1 center. This T4 site is required for CueO function. Like many MCOs, CueO exhibits phenol oxidase activity with broad substrate specificity. Maximal activity with model substrate 2,6-dimethoxyphenol required stoichiometric occupation of T4 by Cu(II) (notation: Cu(II)-CueO). This was achieved in Mops buffer which has little affinity for Cu(2+). However, pH buffers that bind or precipitate Cu(2+) (Tris, BisTris, and KPi) generated enzyme with a vacant T4 site (notation: square-CueO) which has no phenol oxidase activity. Addition of excess Cu(2+) effectively generated a Cu(2+) buffer and recovered the activity partially or completely, depending upon the specific pH buffer. This phenomenon allowed reliable estimation of the affinity of T4 for Cu(II): K(D) = 5.5 x 10(-9) M. CueO is involved in copper tolerance and has been suggested to be a cuprous oxidase. The anion [Cu(I)(Bca)(2)](3-) (Bca = bicinchoninate) acted as a novel chromophoric substrate. It is a robust reagent, being air-stable and having a Cu(I) affinity comparable to those of periplasmic Cu(I) binding proteins. The influences of pH buffer composition and of excess Cu(2+) on cuprous oxidation were diametrically opposite to those seen for phenol oxidation, suggesting that square-CueO, not Cu(II)-CueO, is the resting form of the cuprous oxidase. Steady-state kinetics demonstrated that the intact anion [Cu(I)(Bca)(2)](3-), not "free" Cu(+), is the substrate that donates Cu(I) directly to T4. The data did not follow classical Michaelis-Menten kinetics but could be fitted satisfactorily by an extension that considered the effect of free ligand Bca. The K(m) term consists of two components, allowing estimation of the transient affinity of T4 for Cu(I): K(D) = 1.3 x 10(-13) M. It may be concluded that Cu(I) carried by [Cu(I)(Bca)(2)](3-) is oxidized only upon complete transfer of Cu(I) to T4. The transfer is required to induce a negative shift in the copper reduction potential to allow oxidation and electron transfer to the T1 site. The results provide compelling evidence that CueO is a cuprous oxidase. The new approach will have significant application to the study of metallo-oxidase enzymes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Oxirredutases/metabolismo , Soluções Tampão , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Cinética , Metais/metabolismo , Modelos Moleculares , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Estrutura Terciária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa