Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): e15, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084888

RESUMO

Whole genome sequencing has increasingly become the essential method for studying the genetic mechanisms of antimicrobial resistance and for surveillance of drug-resistant bacterial pathogens. The majority of bacterial genomes sequenced to date have been sequenced with Illumina sequencing technology, owing to its high-throughput, excellent sequence accuracy, and low cost. However, because of the short-read nature of the technology, these assemblies are fragmented into large numbers of contigs, hindering the obtaining of full information of the genome. We develop Pasa, a graph-based algorithm that utilizes the pangenome graph and the assembly graph information to improve scaffolding quality. By leveraging the population information of the bacteria species, Pasa is able to utilize the linkage information of the gene families of the species to resolve the contig graph of the assembly. We show that our method outperforms the current state of the arts in terms of accuracy, and at the same time, is computationally efficient to be applied to a large number of existing draft assemblies.


Assuntos
Algoritmos , Bactérias , Genoma Bacteriano , Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
Genome Res ; 31(4): 677-688, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627473

RESUMO

A fundamental task in single-cell RNA-seq (scRNA-seq) analysis is the identification of transcriptionally distinct groups of cells. Numerous methods have been proposed for this problem, with a recent focus on methods for the cluster analysis of ultralarge scRNA-seq data sets produced by droplet-based sequencing technologies. Most existing methods rely on a sampling step to bridge the gap between algorithm scalability and volume of the data. Ignoring large parts of the data, however, often yields inaccurate groupings of cells and risks overlooking rare cell types. We propose method Specter that adopts and extends recent algorithmic advances in (fast) spectral clustering. In contrast to methods that cluster a (random) subsample of the data, we adopt the idea of landmarks that are used to create a sparse representation of the full data from which a spectral embedding can then be computed in linear time. We exploit Specter's speed in a cluster ensemble scheme that achieves a substantial improvement in accuracy over existing methods and identifies rare cell types with high sensitivity. Its linear-time complexity allows Specter to scale to millions of cells and leads to fast computation times in practice. Furthermore, on CITE-seq data that simultaneously measures gene and protein marker expression, we show that Specter is able to use multimodal omics measurements to resolve subtle transcriptomic differences between subpopulations of cells.


Assuntos
Análise por Conglomerados , Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Algoritmos
3.
Algorithms Mol Biol ; 19(1): 21, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863064

RESUMO

Metric multidimensional scaling is one of the classical methods for embedding data into low-dimensional Euclidean space. It creates the low-dimensional embedding by approximately preserving the pairwise distances between the input points. However, current state-of-the-art approaches only scale to a few thousand data points. For larger data sets such as those occurring in single-cell RNA sequencing experiments, the running time becomes prohibitively large and thus alternative methods such as PCA are widely used instead. Here, we propose a simple neural network-based approach for solving the metric multidimensional scaling problem that is orders of magnitude faster than previous state-of-the-art approaches, and hence scales to data sets with up to a few million cells. At the same time, it provides a non-linear mapping between high- and low-dimensional space that can place previously unseen cells in the same embedding.

4.
iScience ; 27(9): 110623, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39228791

RESUMO

Machine learning has the potential to be a powerful tool in the fight against antimicrobial resistance (AMR), a critical global health issue. Machine learning can identify resistance mechanisms from DNA sequence data without prior knowledge. The first step in building a machine learning model is a feature extraction from sequencing data. Traditional methods like single nucleotide polymorphism (SNP) calling and k-mer counting yield numerous, often redundant features, complicating prediction and analysis. In this paper, we propose PanKA, a method using the pangenome to extract a concise set of relevant features for predicting AMR. PanKA not only enables fast model training and prediction but also improves accuracy. Applied to the Escherichia coli and Klebsiella pneumoniae bacterial species, our model is more accurate than conventional and state-of-the-art methods in predicting AMR.

5.
Genome Biol ; 22(1): 130, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941244

RESUMO

Emerging single-cell technologies profile multiple types of molecules within individual cells. A fundamental step in the analysis of the produced high-dimensional data is their visualization using dimensionality reduction techniques such as t-SNE and UMAP. We introduce j-SNE and j-UMAP as their natural generalizations to the joint visualization of multimodal omics data. Our approach automatically learns the relative contribution of each modality to a concise representation of cellular identity that promotes discriminative features but suppresses noise. On eight datasets, j-SNE and j-UMAP produce unified embeddings that better agree with known cell types and that harmonize RNA and protein velocity landscapes.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Software , Algoritmos
6.
iScience ; 23(6): 101126, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32438285

RESUMO

The massive size of single-cell RNA sequencing datasets often exceeds the capability of current computational analysis methods to solve routine tasks such as detection of cell types. Recently, geometric sketching was introduced as an alternative to uniform subsampling. It selects a subset of cells (the sketch) that evenly cover the transcriptomic space occupied by the original dataset, to accelerate downstream analyses and highlight rare cell types. Here, we propose algorithm Sphetcher that makes use of the thresholding technique to efficiently pick representative cells within spheres (as opposed to the typically used equal-sized boxes) that cover the entire transcriptomic space. We show that the spherical sketch computed by Sphetcher constitutes a more accurate representation of the original transcriptomic landscape. Our optimization scheme allows to include fairness aspects that can encode prior biological or experimental knowledge. We show how a fair sampling can inform the inference of the trajectory of human skeletal muscle myoblast differentiation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa