Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Arthroplasty ; 37(4): 795-801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34979253

RESUMO

BACKGROUND: Improving resection accuracy and eliminating outliers in total knee arthroplasty (TKA) is important to improving patient outcomes regardless of alignment philosophy. Robotic-assisted surgical systems improve resection accuracy and reproducibility compared to conventional instrumentation. Some systems require preoperative imaging while others rely on intraoperative anatomic landmarks. We hypothesized that the alignment accuracy of a novel image-free robotic-assisted surgical system would be equivalent or better than conventional instrumentation with fewer outliers. METHODS: Forty cadaveric specimens were used in this study. Five orthopedic surgeons performed 8 bilateral TKAs each, using the VELYS Robotic-Assisted System (DePuy Synthes) and conventional instrumentation on contralateral knees. Pre-resection and postresection computed tomography scans, along with optical scans of the implant positions were performed to quantify resection accuracies relative to the alignment targets recorded intraoperatively. RESULTS: The robotic-assisted cohort demonstrated smaller resection errors compared to conventional instrumentation in femoral coronal alignment (0.63° ± 0.50° vs 1.39° ± 0.95°, P < .001), femoral sagittal alignment (1.21° ± 0.90° vs 3.27° ± 2.51°, P < .001), and tibial coronal alignment (0.93° ± 0.72° vs 1.65° ± 1.29°, P = .001). All other resection angle accuracies were equivalent. Similar improvements were found in the femoral implant coronal alignment (0.89° ± 0.82° vs 1.42° ± 1.15°, P = .011), femoral implant sagittal alignment (1.51° ± 1.08° vs 2.49° ± 2.10°, P = .006), and tibial implant coronal alignment (1.31° ± 0.84° vs 2.03° ± 1.44°, P = .004). The robotic-assisted cohort had fewer outliers (errors >3°) for all angular resection alignments. CONCLUSION: This in vitro study demonstrated that image-free robotic-assisted TKA can improve alignment accuracy compared to conventional instrumentation and reduce the incidence of outliers.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Artroplastia do Joelho/métodos , Cadáver , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Reprodutibilidade dos Testes , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Assistida por Computador/métodos , Tíbia/cirurgia
2.
Arthroplast Today ; 11: 127-133, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34522740

RESUMO

BACKGROUND: Posterior compartment knee osteophytes may pose a challenge in achieving soft-tissue balance during total knee arthroplasty (TKA). Obtaining symmetry of flexion and extension gaps involves balance of both bony and soft-tissue structures. We hypothesize that space-occupying posteromedial femoral osteophytes affect soft-tissue balance. METHODS: Five cadaveric limbs were acquired. Computed tomography scans were obtained to define the osseous contours. Three-dimensionally printed, specimen-specific synthetic posterior femoral osteophytes were fabricated in 10-mm and 15-mm sizes. TKAs were implanted. Medial and lateral compartment contact forces were measured during passive knee motion using pressure-sensing technology. For each specimen, trials were completed without osteophytes and with 10-mm and 15-mm osteophytes affixed to the posteromedial femoral condyle. Contact forces were obtained at full extension, 10°, 30°, 45°, 60°, and 90° of flexion. These were recorded across each specimen in each condition for three trials. Tukey post hoc tests were used with a repeated measures ANOVA for statistical data analysis. RESULTS: The presence of posteromedial osteophytes increased asymmetric loading from full extension to 45° of flexion, with statistically significant differences observed at full extension and 30°. A reduction in lateral compartment forces was noted. The 25%-75% bounds of variability in the contact force was less than 3.5 lbs. CONCLUSIONS: Posteromedial femoral osteophytes caused an asymmetric increase in medial contact forces from full extension continuing into mid-flexion. The soft-tissue imbalance created from these osteophytes supports their removal before performing ligament releases to obtain desired soft-tissue balancing during TKA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa