Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 55(11): 1531-1544, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737904

RESUMO

Insect venom is abundant in potential antimicrobial peptides (AMPs), which can serve as novel alternatives to conventional antibiotics. Among them, Lasioglossin III LL-III) is a promising candidate with a broad spectrum against many fungi strains and both types of bacteria, whereas almost non-toxic to red blood cells. Many chemical approaches have been recently applied to improve its pharmacological properties and provide useful information regarding structure-activity relationships. Hence, this review focused on highlighting the lesson learned from each modification and supporting the future design of potent, selective, and metabolically stable AMPs.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
2.
Gastroenterology ; 159(4): 1311-1327.e19, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619460

RESUMO

BACKGROUND & AIMS: We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS: We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS: We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS: In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.


Assuntos
Epigênese Genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Montagem e Desmontagem da Cromatina , Epigênese Genética/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , Carga Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 47(3): 1255-1267, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30496486

RESUMO

As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Meis1/genética , Sarcoma de Ewing/genética , Transcrição Gênica , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Humanos , Motivos de Nucleotídeos/genética , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/patologia , Transdução de Sinais/genética
4.
Gut ; 69(4): 630-640, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31409603

RESUMO

OBJECTIVE: While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS: We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS: By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Redes Reguladoras de Genes/fisiologia , Fatores de Transcrição/genética , Adenocarcinoma/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Fator de Transcrição GATA6/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas Proto-Oncogênicas c-ets/genética
5.
Proc Natl Acad Sci U S A ; 114(15): 3981-3986, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28356518

RESUMO

ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos Mutantes , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Quinazolinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
6.
J Pathol ; 246(1): 89-102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926931

RESUMO

Characterising the activated oncogenic signalling that leads to advanced breast cancer is of clinical importance. Here, we showed that SET domain, bifurcated 1 (SETDB1), a histone H3 lysine 9 methyltransferase, is aberrantly expressed and behaves as an oncogenic driver in breast cancer. SETDB1 enhances c-MYC and cyclin D1 expression by promoting the internal ribosome entry site (IRES)-mediated translation of MYC/CCND1 mRNA, resulting in prominent signalling of c-MYC to promote cell cycle progression, and provides a growth/self-renewal advantage to breast cancer cells. The activated c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis, because silencing of either c-MYC or BMI1 profoundly impairs the enhanced growth/colony formation conferred by SETDB1. Furthermore, c-MYC directly binds to the SETDB1 promoter region and enhances its transcription, suggesting a positive regulatory interplay between SETDB1 and c-MYC. In this study, we identified SETDB1 as a prominent oncogene and characterised the underlying mechanism whereby SETDB1 drives breast cancer, providing a therapeutic rationale for targeting SETDB1-BMI1 signalling in breast cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/enzimologia , Carcinogênese/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Ciclo Celular , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Células MCF-7 , Camundongos , Oncogenes , Complexo Repressor Polycomb 1/genética , Proteínas Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Ativação Transcricional
7.
Haematologica ; 103(12): 1980-1990, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30093396

RESUMO

Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Hematopoese/genética , Células Mieloides/metabolismo , Proteínas Repressoras/genética , Doença Aguda , Animais , Perfilação da Expressão Gênica/métodos , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese/genética
8.
Prostate ; 76(14): 1293-302, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338236

RESUMO

BACKGROUND: Preclinical and clinical studies suggest that a fish oil-based diet may play a role in delaying the progression of prostate cancer through a number of different mechanisms involving inflammatory pathways. Given the importance of tumor-associated macrophages (TAMs) in carcinogenesis, we hypothesized that a fish oil-based diet will inhibit TAM infiltration and delay the growth of prostate cancer. METHODS: Androgen sensitive mouse prostate cancer (MycCaP) allograft tumors were grown in fully immunocompetent FVB mice fed a high- fat fish oil (omega-3) or corn oil (omega-6) diet. Gene expression of markers for immune cell populations, cytokines, chemokines, and signaling pathways were determined by real-time PCR and western blot in tumor tissue. Cell proliferation and apoptosis in vitro were measured by MTS assay and flow cytometry. RESULTS: Tumor volumes were significantly smaller in mice in ω-3 versus the ω-6 group (P = 0.048). Gene expression of markers for M1 and M2 macrophages (F4/80, iNOS, ARG1), associated cytokines (IL-6, TNF alpha, IL-10), and the chemokine CCL-2 were also lower in the omega-3 group. Correlative in vitro studies were performed in M1 and M2 polarized macrophages and mirrored the in vivo findings. Dietary fish oil and in vitro omega-3 fatty acid administration reduced protein expression of transcription factors in the nuclear factor kappa B pathway leading to a significant decrease in gene expression of downstream targets (Bcl-2, BCL-XL, XIAP, survivin) in MycCap cells. CONCLUSIONS: These findings underscore the potential of fish oil in modulating the clinical course of human prostate cancer through the immune system. Further preclinical and clinical studies are warranted evaluating fish oil-based therapies for inhibiting the recruitment and function of M1 and M2 tumor infiltrating macrophages. Prostate 76:1293-1302, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Progressão da Doença , Ácidos Graxos Ômega-3/administração & dosagem , Macrófagos/efeitos dos fármacos , Neoplasias da Próstata/dietoterapia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Gorduras Insaturadas na Dieta/administração & dosagem , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia
9.
J Pathol ; 235(4): 559-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25404354

RESUMO

We investigated the oncogenic role of SETDB1, focusing on non-small cell lung cancer (NSCLC), which has high expression of this protein. A total of 387 lung cancer cases were examined by immunohistochemistry; 72% of NSCLC samples were positive for SETDB1 staining, compared to 46% samples of normal bronchial epithelium (106 cases) (p <0.0001). The percentage of positive cells and the intensity of staining increased significantly with increased grade of disease. Forced expression of SETDB1 in NSCLC cell lines enhanced their clonogenic growth in vitro and markedly increased tumour size in a murine xenograft model, while silencing (shRNA) SETDB1 in NSCLC cells slowed their proliferation. SETDB1 positively stimulated activity of the WNT-ß-catenin pathway and diminished P53 expression, resulting in enhanced NSCLC growth in vitro and in vivo. Our finding suggests that therapeutic targeting of SETDB1 may benefit patients whose tumours express high levels of SETDB1.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Proteínas Metiltransferases/metabolismo , Via de Sinalização Wnt , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Histona-Lisina N-Metiltransferase , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Gradação de Tumores , Transplante de Neoplasias , Proteínas Metiltransferases/genética , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/genética
10.
Proc Natl Acad Sci U S A ; 110(15): 6109-14, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23536305

RESUMO

Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry staining revealed that its protein levels were up-regulated compared with corresponding nontransformed tissues. Importantly, depletion of endogenous PDE4D with three independent shRNAs caused apoptosis and growth inhibition in multiple types of cancer cells, including breast, lung, ovary, endometrium, gastric, and melanoma, which could be rescued by reexpression of PDE4D. We further showed that antitumor events triggered by PDE4D suppression were lineage-dependently associated with Bcl-2 interacting mediator of cell death (BIM) induction and microphthalmia-associated transcription factor (MITF) down-regulation. Furthermore, ectopic expression of the PDE4D short isoform, PDE4D2, enhanced the proliferation of cancer cells both in vitro and in vivo. Moreover, treatment of cancer cells with a unique specific PDE4D inhibitor, 26B, triggered massive cell death and growth retardation. Notably, these antineoplastic effects induced by either shRNAs or small molecule occurred preferentially in cancer cells but not in nonmalignant epithelial cells. These results suggest that although targeted by genomic homozygous microdeletions, PDE4D functions as a tumor-promoting factor and represents a unique targetable enzyme of cancer cells.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Apoptose , Morte Celular , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Deleção de Genes , Perfilação da Expressão Gênica , Genômica , Humanos , Imuno-Histoquímica , Fator de Transcrição Associado à Microftalmia/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Int J Cancer ; 136(9): 2055-64, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25307878

RESUMO

Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mammalian target of rapamycin (mTOR) inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of bromodomain-containing protein 4 (BRD4) inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains the antiproliferative activity of JQ1 in OS cells.


Assuntos
Azepinas/farmacologia , Osteossarcoma/tratamento farmacológico , Sirolimo/farmacologia , Triazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sinergismo Farmacológico , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Genes myc/genética , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Mol Carcinog ; 53(9): 722-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475695

RESUMO

Pancreatic ductal adenocarcinoma is a devastating disease with few therapeutic options. Histone deacetylase inhibitors are a novel therapeutic approach to cancer treatment; and two new pan-histone deacetylase inhibitors (HDACi), belinostat and panobinostat, are undergoing clinical trials for advanced hematologic malignancies, non-small cell lung cancers and advanced ovarian epithelial cancers. We found that belinostat and panobinostat potently inhibited, in a dose-dependent manner, the growth of six (AsPc1, BxPc3, Panc0327, Panc0403, Panc1005, MiaPaCa2) of 14 human pancreatic cancer cell lines. Belinostat increased the percentage of apoptotic pancreatic cancer cells and caused prominent G2 /M growth arrest of most pancreatic cancer cells. Belinostat prominently inhibited PI3K-mTOR-4EBP1 signaling with a 50% suppression of phorphorylated 4EBP1 (AsPc1, BxPc3, Panc0327, Panc1005 cells). Surprisingly, belinostat profoundly blocked hypoxia signaling including the suppression of hypoxia response element reporter activity; as well as an approximately 10-fold decreased transcriptional expression of VEGF, adrenomedullin, and HIF1α at 1% compared to 20% O2 . Treatment with this HDACi decreased levels of thioredoxin mRNA associated with increased levels of its endogenous inhibitor thioredoxin binding protein-2. Also, belinostat alone and synergistically with gemcitabine significantly (P = 0.0044) decreased the size of human pancreatic tumors grown in immunodeficiency mice. Taken together, HDACi decreases growth, increases apoptosis, and is associated with blocking the AKT/mTOR pathway. Surprisingly, it blocked hypoxic growth related signals. Our studies of belinostat suggest it may be an effective drug for the treatment of pancreatic cancers when used in combination with other drugs such as gemcitabine.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas In Vitro , Indóis/farmacologia , Camundongos , NF-kappa B/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Panobinostat , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas
13.
ChemMedChem ; 19(7): e202300480, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38408263

RESUMO

Amphipathicity is a critical characteristic of helical antimicrobial peptides (AMPs). The hydrophilic region, primarily composed of cationic residues, plays a pivotal role in the initial binding to negatively charged components on bacterial membranes through electrostatic interactions. Subsequently, the hydrophobic region interacts with hydrophobic components, inducing membrane perturbation, ultimately leading to cell death, or inhibiting intracellular function. Due to the extensive diversity of natural and synthetic AMPs with regard to the design of amphipathicity, it is complicated to study the structure-activity relationships. Therefore, this work aims to categorize the common amphipathic design and investigate their impact on the biological properties of AMPs. Besides, the connection between current structural modification approaches and amphipathic styles was also discussed.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Estrutura Secundária de Proteína , Bactérias , Relação Estrutura-Atividade , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana
14.
Int J Cancer ; 132(12): 2730-7, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23165325

RESUMO

Despite recent advances in therapy, breast cancer remains the second most common cause of death from malignancy in women. Chemotherapy plays a major role in breast cancer management, and combining chemotherapeutic agents with nonchemotherapeutic agents is of considerable clinical interest. Cucurbitacins are triterpenes compounds found in plants of the Cucurbitaceae family, reported to have anticancer and anti-inflammatory activities. Previously, we have shown antiproliferative activity of cucurbitacin B (CuB) in breast cancer, and we hypothesized that combining CuB with chemotherapeutic agents can augment their antitumor effect. Here, we show that a combination of CuB with either docetaxel (DOC) or gemcitabine (GEM) synergistically inhibited the proliferation of MDA-MB-231 breast cancer cells in vitro. This antiproliferative effect was accompanied by an increase in apoptosis rates. Furthermore, in vivo treatment of human breast cancer orthotopic xenografts in immunodeficient mice with CuB at either low (0.5 mg/kg) or high (1 mg/kg) doses in combination with either DOC (20 mg/kg) or GEM (12.5mg/kg) significantly reduced tumor volume as compared with monotherapy of each drug. Importantly, no significant toxicity was noted with low-dose CuB in combination with either DOC or GEM. In conclusion, combination of CuB at a relatively low concentration with either of the chemotherapeutic agents, DOC or GEM, shows prominent antiproliferative activity against breast cancer cells without increased toxicity. This promising combination should be examined in therapeutic trials of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Docetaxel , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Taxoides/farmacologia , Triterpenos/toxicidade , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
15.
Front Immunol ; 14: 1112870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006263

RESUMO

Introduction: In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre- existing co-morbidities correlating to incidence to severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS-CoV-2 infection. Methods: To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. This model was infected with live SARS-CoV-2 virus the epithelial response to infection was evaluated. Results: SARS-CoV-2 infection of airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented proinflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory responses are polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the \epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. Conclusions: This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Células Epiteliais , Sistema Respiratório , Inflamação
16.
Int J Cancer ; 130(10): 2464-73, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21732345

RESUMO

19-nor-14-epi-23-yne-1,25(OH)(2) D(3) (inecalcitol) is a unique vitamin D(3) analog. We evaluated the activity of inecalcitol in a human prostate cancer model system. The analog was 11-fold more potent than 1,25(OH)(2) D(3) in causing 50% clonal growth inhibition of androgen-sensitive human prostate cancer LNCaP cells. Inecalcitol, more than 1,25(OH)(2) D(3) , reduced in a dose-dependent manner the expression levels of the transcription factor ETS variant 1 and the serine/threonine protein kinase Pim-1, both of which are upregulated in prostate cancer. Remarkably, dose challenge experiments revealed that inecalcitol maximal tolerated dose (MTD) by intraperitoneal (i.p.) administration was 30 µg/mouse (1,300 µg/kg) three times per week, while we previously found that the MTD of 1,25(OH)(2) D(3) is 0.0625 µg/mouse; therefore, inecalcitol is 480 times less hypercalcemic than 1,25(OH)(2) D(3) . Pharmacokinetic studies showed that plasma half-life of inecalcitol were 18.3 min in mice. A xenograft model of LNCaP cells was developed in immunodeficient mice treated with inecalcitol. The tumors of the diluent-treated control mice increased in size but those in the inecalcitol treatment group did not grow. Our data suggest that inecalcitol inhibits androgen-responsive prostate cancer growth in vivo and should be examined either alone or with other chemotherapy in clinical trials in individuals with rising serum prostate-specific antigen after receiving either surgery or irradiation therapy with curative intent.


Assuntos
Alcinos/uso terapêutico , Androgênios/fisiologia , Colecalciferol/análogos & derivados , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Colecalciferol/uso terapêutico , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mod Pathol ; 25(6): 828-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411186

RESUMO

Limited understanding of molecular mechanisms of metastasis in melanoma contributes to the absence of effective treatments. Increased knowledge of alterations in genes that underpin critical molecular events that lead to metastasis is essential. We have investigated the gene expression profiles of primary melanomas and melanoma metastases in sentinel lymph nodes. A total of 19 samples (10 primary melanomas and 9 sentinel lymph node metastases) were evaluated. Melanoma cells were dissected from tissue blocks. Total mRNA was isolated, amplified, and labeled using an Ambion Recover All Total Nucleic Acid Isolation kit, Nu-GEN WT-Ovation formalin-fixed, paraffin-embedded RNA Amplification System, and FL-Ovation cDNA Biotin Module V2, respectively. Samples were hybridized to the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data were analyzed using Partek Genomics Suite Version 6.4. Genes selected showed ≥2-fold difference in expression and P<5.00E-2. Validation studies used standard immunohistochemical assays. Hierarchical clustering disclosed two distinct groups: 10 primary melanomas and 9 sentinel lymph node metastases. Gene expression analysis identified 576 genes that showed significant differential expression. Most differences reflected decreased gene expression in metastases relative to primaries. Reduced gene expression in primaries was less frequent and less dramatic. Genes significantly increased or decreased in sentinel lymph node metastases were active in cell adhesion/structural integrity, tumor suppression, cell cycle regulation, and apoptosis. Validation studies indicate that MAGEC1 (melanoma antigen family C1) and FCRL1 (Fc receptor-like 1) are involved in melanoma progression. There are striking differential gene expression patterns between primary and nodally metastatic melanomas. Similar findings were seen with autologous paired primary melanomas and sentinel lymph node metastases, supporting involvement of these gene alterations in evolution of metastases. With further study, it may be possible to determine the exact sequence of molecular events that underlie melanoma metastases.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linfonodos/química , Linfonodos/patologia , Melanoma/genética , Melanoma/secundário , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/análise , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Los Angeles , Metástase Linfática , Masculino , Melanoma/química , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , New South Wales , Análise de Sequência com Séries de Oligonucleotídeos , Inclusão em Parafina , Fenótipo , Análise de Componente Principal , RNA Mensageiro/análise , Reprodutibilidade dos Testes , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/química
18.
BME Front ; 2022: 9786242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850170

RESUMO

The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.

19.
Int J Cancer ; 127(10): 2257-67, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20162579

RESUMO

Connective tissue growth factor (CTGF or CCN2) is a secreted protein that belongs to the CCN [cysteine-rich CYR61/CTGF/nephroblastoma-overexpressed gene] family. These proteins have been implicated in various biological processes, including stimulation of cell proliferation, migration, angiogenesis and tumorigenesis. In a previous study, we found that CTGF mRNA was elevated in primary gliomas, and a significant correlation existed between CTGF mRNA levels versus tumor grade, histology and patient survival. In this study, the role of CTGF in glioma tumorigenesis was explored. Forced expression of CTGF in glioblastoma multiforme (GBM) cells accelerated their growth in liquid culture and soft agar, stimulated cells migration in Boyden chamber assays and significantly increased their ability to form large, vascularized tumors in nude mice. CTGF induced the expression of the antiapoptotic proteins, Bcl-xl, Survivin and Flip. Overexpression of CTGF caused the U343 GBM cells to survive for longer than 40 days in serum-free medium and resist antitumor drugs including tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand, VELCADE (bortezomib, proteasome inhibitor) and temozolomide. Our data suggest that CTGF plays an important role in glioma progression, by supporting tumor cells survival and drug resistance.


Assuntos
Neoplasias Encefálicas/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Glioblastoma/genética , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Meios de Cultura Livres de Soro , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/irrigação sanguínea , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Transfecção
20.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31551365

RESUMO

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Assuntos
Neoplasias da Mama/genética , Fator 1 de Resposta a Butirato/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias da Bexiga Urinária/genética , Regiões 3' não Traduzidas/genética , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Fator 1 de Resposta a Butirato/genética , Carcinogênese/genética , Ciclo Celular/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Fator de Transcrição E2F1/genética , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa