Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 49(2): 134-144, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102017

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport. Furthermore, we discuss recent structural and biophysical studies of the ion transporter superfamily (ITS) members and highlight mechanistic principles that are relevant for further exploration of the TRAP transporter system.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte/metabolismo , Bactérias/metabolismo , Transporte Biológico
2.
J Biol Chem ; 300(5): 107282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604564

RESUMO

The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.


Assuntos
Proteínas de Bactérias , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/enzimologia , Animais , Camundongos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/enzimologia , Infecções Pneumocócicas/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Feminino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Tiocianatos
3.
Eur Biophys J ; 52(4-5): 459-471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36583735

RESUMO

Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.


Assuntos
Microfluídica , Proteínas , Microfluídica/métodos , Difusão
4.
Biochem J ; 479(2): 207-223, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34935873

RESUMO

Bacteriophage endolysins degrade peptidoglycan and have been identified as antibacterial candidates to combat antimicrobial resistance. Considering the catalytic and structural diversity of endolysins, there is a paucity of structural data to inform how these enzymes work at the molecular level - key data that is needed to realize the potential of endolysin-based antibacterial agents. Here, we determine the atomic structure and define the enzymatic function of Escherichia coli O157:H7 phage FTEBc1 endolysin, LysT84. Bioinformatic analysis reveals that LysT84 is a modular endolysin, which is unusual for Gram-negative endolysins, comprising a peptidoglycan binding domain and an enzymatic domain. The crystal structure of LysT84 (2.99 Å) revealed a mostly α-helical protein with two domains connected by a linker region but packed together. LysT84 was determined to be a monomer in solution using analytical ultracentrifugation. Small-angle X-ray scattering data revealed that LysT84 is a flexible protein but does not have the expected bimodal P(r) function of a multidomain protein, suggesting that the domains of LysT84 pack closely creating a globular protein as seen in the crystal structure. Structural analysis reveals two key glutamate residues positioned on either side of the active site cavity; mutagenesis demonstrating these residues are critical for peptidoglycan degradation. Molecular dynamic simulations suggest that the enzymatically active domain is dynamic, allowing the appropriate positioning of these catalytic residues for hydrolysis of the ß(1-4) bond. Overall, our study defines the structural basis for peptidoglycan degradation by LysT84 which supports rational engineering of related endolysins into effective antibacterial agents.


Assuntos
Antibacterianos/química , Bacteriófagos/enzimologia , Endopeptidases/química , Escherichia coli O157/virologia , Proteínas Virais/química , Antibacterianos/metabolismo , Biocatálise , Domínio Catalítico , Parede Celular/metabolismo , Biologia Computacional/métodos , Cristalização , Endopeptidases/metabolismo , Ácido Glutâmico/química , Hidrólise , Simulação de Dinâmica Molecular , Peptidoglicano/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Virais/metabolismo
5.
Biophys J ; 121(13): 2526-2537, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35659645

RESUMO

Neuronal development and function are dependent in part on the several roles of the secreted glycoprotein Reelin. Endogenous proteases process this 400 kDa, modular protein, yielding N-terminal, central, and C-terminal fragments that each have distinct roles in Reelin's function and regulation. The C-terminal fragment comprises Reelin repeat (RR) domains seven and eight, as well as a basic stretch of 32 amino acid residues termed the C-terminal region (CTR), influences Reelin signaling intensity, and has been reported to bind to Neuropilin-1, which serves as a co-receptor in the canonical Reelin signaling pathway. Here, we present a crystal structure of RR8 at 3.0 Å resolution. Analytical ultracentrifugation and small-angle x-ray scattering confirmed that RR8 is monomeric and enabled us to identify the CTR as a flexible, yet compact subdomain. We conducted structurally informed protein engineering to design a chimeric RR8 construct guided by the structural similarities with RR6. Experimental results support a mode of Reelin-receptor interaction reliant on the multiple interfaces coordinating the binding event. Structurally, RR8 resembles other individual RRs, but its structure does show discrete differences that may account for Reelin receptor specificity toward RR6.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Moléculas de Adesão Celular Neuronais/química , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Proteína Reelina , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
6.
J Biol Chem ; 296: 100438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610552

RESUMO

For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in "omics," chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid-derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure-function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.


Assuntos
Aminoácidos/metabolismo , Anti-Infecciosos/farmacologia , Plantas/metabolismo , Desenvolvimento de Medicamentos , Compostos Fitoquímicos/farmacologia
7.
J Biol Chem ; 297(4): 101113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437902

RESUMO

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Catálise , Hexosaminas/genética , Hexosaminas/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Staphylococcus aureus/genética , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
8.
J Biol Chem ; 296: 100494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667550

RESUMO

Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with H2O2 and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site. It is not established whether structural changes in this region, such as mixed disulfide formation, affect H2O2 reactivity. To investigate, we designed mutants to cause minimal (C172S) or substantial (C172D and C172W) structural disruption. Stopped flow kinetics and mass spectrometry showed that mutation to Ser had minimal effect on rates of oxidation and hyperoxidation, whereas Asp and Trp decreased both by ∼100-fold. To relate to structural changes, we solved the crystal structures of reduced WT and C172S Prdx2. The WT structure is highly similar to that of the published hyperoxidized form. C172S is closely related but more flexible and as demonstrated by size exclusion chromatography and analytical ultracentrifugation, a weaker decamer. Size exclusion chromatography and analytical ultracentrifugation showed that the C172D and C172W mutants are also weaker decamers than WT, and small-angle X-ray scattering analysis indicated greater flexibility with partially unstructured regions consistent with C-terminal unfolding. We propose that these structural changes around C172 negatively impact the active site geometry to decrease reactivity with H2O2. This is relevant for Prdx turnover as intermediate mixed disulfides with C172 would also be disruptive and could potentially react with peroxides before resolution is complete.


Assuntos
Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Peróxido de Hidrogênio/química , Mutação , Oxidantes/química , Oxidantes/metabolismo , Oxirredução , Relação Estrutura-Atividade
9.
Immunity ; 39(3): 443-53, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24012422

RESUMO

Mixed lineage kinase domain-like (MLKL) is a component of the "necrosome," the multiprotein complex that triggers tumor necrosis factor (TNF)-induced cell death by necroptosis. To define the specific role and molecular mechanism of MLKL action, we generated MLKL-deficient mice and solved the crystal structure of MLKL. Although MLKL-deficient mice were viable and displayed no hematopoietic anomalies or other obvious pathology, cells derived from these animals were resistant to TNF-induced necroptosis unless MLKL expression was restored. Structurally, MLKL comprises a four-helical bundle tethered to the pseudokinase domain, which contains an unusual pseudoactive site. Although the pseudokinase domain binds ATP, it is catalytically inactive and its essential nonenzymatic role in necroptotic signaling is induced by receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated phosphorylation. Structure-guided mutation of the MLKL pseudoactive site resulted in constitutive, RIPK3-independent necroptosis, demonstrating that modification of MLKL is essential for propagation of the necroptosis pathway downstream of RIPK3.


Assuntos
Apoptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fosfoproteínas Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Transdução de Sinais
10.
Biochem J ; 478(17): 3319-3330, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34424335

RESUMO

Angiotensinogen fine-tunes the tightly controlled activity of the renin-angiotensin system by modulating the release of angiotensin peptides that control blood pressure. One mechanism by which this modulation is achieved is via angiotensinogen's Cys18-Cys138 disulfide bond that acts as a redox switch. Molecular dynamics simulations of each redox state of angiotensinogen reveal subtle dynamic differences between the reduced and oxidised forms, particularly at the N-terminus. Surface plasmon resonance data demonstrate that the two redox forms of angiotensinogen display different binding kinetics to an immobilised anti-angiotensinogen monoclonal antibody. Mass spectrometry mapped the epitope for the antibody to the N-terminal region of angiotensinogen. We therefore provide evidence that the different redox forms of angiotensinogen can be detected by an antibody-based detection method.


Assuntos
Angiotensinogênio/química , Angiotensinogênio/metabolismo , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície/métodos , Angiotensinogênio/genética , Angiotensinogênio/imunologia , Anticorpos Monoclonais/imunologia , Pressão Sanguínea/fisiologia , Cisteína/metabolismo , Dissulfetos/metabolismo , Epitopos/imunologia , Humanos , Cinética , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sistema Renina-Angiotensina/fisiologia
11.
J Biol Chem ; 295(10): 2984-2999, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974167

RESUMO

During aerobic growth, the Gram-positive facultative anaerobe and opportunistic human pathogen Streptococcus pneumoniae generates large amounts of hydrogen peroxide that can accumulate to millimolar concentrations. The mechanism by which this catalase-negative bacterium can withstand endogenous hydrogen peroxide is incompletely understood. The enzyme alkylhydroperoxidase D (AhpD) has been shown to contribute to pneumococcal virulence and oxidative stress responses in vivo We demonstrate here that SpAhpD exhibits weak thiol-dependent peroxidase activity and, unlike the previously reported Mycobacterium tuberculosis AhpC/D system, SpAhpD does not mediate electron transfer to SpAhpC. A 2.3-Å resolution crystal structure revealed several unusual structural features, including a three-cysteine active site architecture that is buried in a deep pocket, in contrast to the two-cysteine active site found in other AhpD enzymes. All single-cysteine SpAhpD variants remained partially active, and LC-MS/MS analyses revealed that the third cysteine, Cys-163, formed disulfide bonds with either of two cysteines in the canonical Cys-78-X-X-Cys-81 motif. We observed that SpAhpD formed a dimeric quaternary structure both in the crystal and in solution, and that the highly conserved Asn-76 of the AhpD core motif is important for SpAhpD folding. In summary, SpAhpD is a weak peroxidase and does not transfer electrons to AhpC, and therefore does not fit existing models of bacterial AhpD antioxidant defense mechanisms. We propose that it is unlikely that SpAhpD removes peroxides either directly or via AhpC, and that SpAhpD cysteine oxidation may act as a redox switch or mediate electron transfer with other thiol proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Peroxidases/metabolismo , Streptococcus pneumoniae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dimerização , Dissulfetos/química , Ditiotreitol/química , Mutagênese Sítio-Dirigida , Peroxidases/química , Peroxidases/genética , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Espectrometria de Massas em Tandem
12.
J Biol Chem ; 295(24): 8285-8301, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332100

RESUMO

Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the ß-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.


Assuntos
Subunidade alfa de Receptor de Interleucina-11/química , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Área Sob a Curva , Linhagem Celular Tumoral , Entropia , Humanos , Subunidade alfa de Receptor de Interleucina-11/genética , Modelos Moleculares , Mutação/genética , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Termodinâmica
13.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31949045

RESUMO

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Hexosaminas/química , Hexosaminas/metabolismo , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
14.
Biochem Soc Trans ; 49(6): 2711-2726, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854920

RESUMO

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.


Assuntos
Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Regulação da Expressão Gênica , Transcrição Gênica , Bactérias/genética , Cristalografia por Raios X
15.
Biochemistry ; 59(24): 2274-2288, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32478518

RESUMO

While humans lack the biosynthetic pathways for meso-diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the Chlamydia family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from Verrucomicrobium spinosum (VsDapL), a nonpathogenic model bacterium for Chlamydia trachomatis. Complementation experiments verify that the V. spinosum dapL gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an Escherichia coli strain that is auxotrophic for meso-diaminopimelate. Kinetic studies show that VsDapL follows a Michaelis-Menten mechanism, with a KMapp of 4.0 mM toward its substrate l,l-diaminopimelate. The kcat (0.46 s-1) and the kcat/KM (115 s-1 M-1) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that VsDapL exists in a monomer-dimer self-association, with a KD2-1 of 7.4 µM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in VsDapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/química , Transaminases/antagonistas & inibidores , Transaminases/química , Verrucomicrobia/enzimologia , Relação Estrutura-Atividade , Transaminases/genética , Verrucomicrobia/genética
16.
J Biol Chem ; 294(21): 8505-8515, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30962284

RESUMO

meso-Diaminopimelate decarboxylase catalyzes the decarboxylation of meso-diaminopimelate, the final reaction in the diaminopimelate l-lysine biosynthetic pathway. It is the only known pyridoxal-5-phosphate-dependent decarboxylase that catalyzes the removal of a carboxyl group from a d-stereocenter. Currently, only prokaryotic orthologs have been kinetically and structurally characterized. Here, using complementation and kinetic analyses of enzymes recombinantly expressed in Escherichia coli, we have functionally tested two putative eukaryotic meso-diaminopimelate decarboxylase isoforms from the plant species Arabidopsis thaliana We confirm they are both functional meso-diaminopimelate decarboxylases, although with lower activities than those previously reported for bacterial orthologs. We also report in-depth X-ray crystallographic structural analyses of each isoform at 1.9 and 2.4 Å resolution. We have captured the enzyme structure of one isoform in an asymmetric configuration, with one ligand-bound monomer and the other in an apo-form. Analytical ultracentrifugation and small-angle X-ray scattering solution studies reveal that A. thaliana meso-diaminopimelate decarboxylase adopts a homodimeric assembly. On the basis of our structural analyses, we suggest a mechanism whereby molecular interactions within the active site transduce conformational changes to the active-site loop. These conformational differences are likely to influence catalytic activity in a way that could allow for d-stereocenter selectivity of the substrate meso-diaminopimelate to facilitate the synthesis of l-lysine. In summary, the A. thaliana gene loci At3g14390 and At5g11880 encode functional. meso-diaminopimelate decarboxylase enzymes whose structures provide clues to the stereochemical control of the decarboxylation reaction catalyzed by these eukaryotic proteins.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Carboxiliases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboxiliases/genética , Domínio Catalítico , Cristalografia por Raios X , Domínios Proteicos
17.
Proteins ; 88(5): 654-668, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31697432

RESUMO

Human pathogenic and commensal bacteria have evolved the ability to scavenge host-derived sialic acids and subsequently degrade them as a source of nutrition. Expression of the Escherichia coli yjhBC operon is controlled by the repressor protein nanR, which regulates the core machinery responsible for the import and catabolic processing of sialic acid. The role of the yjhBC encoded proteins is not known-here, we demonstrate that the enzyme YjhC is an oxidoreductase/dehydrogenase involved in bacterial sialic acid degradation. First, we demonstrate in vivo using knockout experiments that YjhC is broadly involved in carbohydrate metabolism, including that of N-acetyl-d-glucosamine, N-acetyl-d-galactosamine and N-acetylneuraminic acid. Differential scanning fluorimetry demonstrates that YjhC binds N-acetylneuraminic acid and its lactone variant, along with NAD(H), which is consistent with its role as an oxidoreductase. Next, we solved the crystal structure of YjhC in complex with the NAD(H) cofactor to 1.35 Å resolution. The protein fold belongs to the Gfo/Idh/MocA protein family. The dimeric assembly observed in the crystal form is confirmed through solution studies. Ensemble refinement reveals a flexible loop region that may play a key role during catalysis, providing essential contacts to stabilize the substrate-a unique feature to YjhC among closely related structures. Guided by the structure, in silico docking experiments support the binding of sialic acid and several common derivatives in the binding pocket, which has an overall positive charge distribution. Taken together, our results verify the role of YjhC as a bona fide oxidoreductase/dehydrogenase and provide the first evidence to support its involvement in sialic acid metabolism.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , NAD/química , Oxirredutases/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Clonagem Molecular , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , NAD/metabolismo , Óperon , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Especificidade por Substrato , Termodinâmica
18.
Proteins ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865821

RESUMO

N-acetylglucosamine 6-phosphate deacetylase (NagA) catalyzes the conversion of N-acetylglucosamine-6-phosphate to glucosamine-6-phosphate in amino sugar catabolism. This conversion is an essential step in the catabolism of sialic acid in several pathogenic bacteria, including Pasteurella multocida, and thus NagA is identified as a potential drug target. Here, we report the unique structural features of NagA from P. multocida (PmNagA) resolved to 1.95 Å. PmNagA displays an altered quaternary architecture with unique interface interactions compared to its close homolog, the Escherichia coli NagA (EcNagA). We confirmed that the altered quaternary structure is not a crystallographic artifact using single particle electron cryo-microscopy. Analysis of the determined crystal structure reveals a set of hot-spot residues involved in novel interactions at the dimer-dimer interface. PmNagA binds to one Zn2+ ion in the active site and demonstrates kinetic parameters comparable to other bacterial homologs. Kinetic studies reveal that at high substrate concentrations (~10-fold the KM ), the tetrameric PmNagA displays hysteresis similar to its distant neighbor, the dimeric Staphylococcus aureus NagA (SaNagA). Our findings provide key information on structural and functional properties of NagA in P. multocida that could be utilized to design novel antibacterials.

19.
Eur Biophys J ; 49(8): 673-676, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33211149

RESUMO

Understanding the nature of macromolecules and their interactions in solution underpins many fields, including biology, chemistry and materials science. The 24th International Analytical Ultracentrifugation Workshop and Symposium (AUC2019, held in Christchurch, New Zealand, August 2019), brought together 77 international delegates to highlight recent developments in the field. There was a focus on analytical ultracentrifugation, although we recognise that this is but one of the key methods in the biophysicist's toolkit. Many of the presentations showcased the versatility of analytical ultracentrifugation and how such experiments are integrated with other solution techniques, such as small-angle X-ray scattering, cryo-electron microscopy, isothermal titration calorimetry and more. This special issue emphasises a wide range of themes covered in the meeting, including carbohydrate chemistry, protein chemistry, polymer science, and macromolecular interactions.


Assuntos
Ultracentrifugação , DNA/isolamento & purificação , DNA/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Padrões de Referência
20.
Eur Biophys J ; 49(8): 819-827, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33219833

RESUMO

Understanding how proteins interact with DNA, and particularly the stoichiometry of a protein-DNA complex, is key information needed to elucidate the biological role of the interaction, e.g. transcriptional regulation. Here, we present an emerging analytical ultracentrifugation method that features multi-wavelength detection to characterise complex mixtures by deconvoluting the spectral signals of the interaction partners into separate sedimentation profiles. The spectral information obtained in this experiment provides direct access to the molar stoichiometry of the interacting system to complement traditional hydrodynamic information. We demonstrate this approach by characterising a multimeric assembly process between the transcriptional repressor of bacterial sialic acid metabolism, NanR and its DNA-binding sequence. The method introduced in this study can be extended to quantitatively analyse any complex interaction in solution, providing the interaction partners have different optical properties.


Assuntos
DNA/metabolismo , Proteínas/metabolismo , Ultracentrifugação , Sequência de Bases , DNA/genética , Ligação Proteica , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa