Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(28): 13867-13872, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239344

RESUMO

Small variations in the primary amino acid sequence of extracellular matrix proteins can have profound effects on the biomineralization of hard tissues. For example, a change in one amino acid within the amelogenin protein can lead to drastic changes in enamel phenotype, resulting in amelogenesis imperfecta, enamel that is defective and easily damaged. Despite the importance of these undesirable phenotypes, there is very little understanding of how single amino acid variation in amelogenins can lead to malformed enamel. Here, we aim to develop a thermodynamic understanding of how protein variants can affect steps of the biomineralization process. High-resolution, in situ atomic force microscopy (AFM) showed that altering one amino acid within the murine amelogenin sequence (natural variants T21 and P41T, and experimental variant P71T) resulted in an increase in the quantity of protein adsorbed onto hydroxyapatite (HAP) and the formation of multiple protein layers. Quantitative analysis of the equilibrium adsorbate amounts revealed that the protein variants had higher oligomer-oligomer binding energies. MMP20 enzyme degradation and HAP mineralization studies showed that the amino acid variants slowed the degradation of amelogenin by MMP20 and inhibited the growth and phase transformation of HAP. We propose that the protein variants cause malformed enamel because they bind excessively to HAP and disrupt the normal HAP growth and enzymatic degradation processes. The in situ methods applied to determine the energetics of molecular level processes are powerful tools toward understanding the mechanisms of biomineralization.


Assuntos
Amelogênese Imperfeita/genética , Amelogenina/genética , Biomineralização/genética , Proteínas da Matriz Extracelular/genética , Adsorção/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Amelogenina/química , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Animais , Durapatita/química , Metabolismo Energético/genética , Proteínas da Matriz Extracelular/química , Humanos , Metaloproteinase 20 da Matriz/química , Metaloproteinase 20 da Matriz/genética , Camundongos , Microscopia de Força Atômica , Conformação Proteica , Termodinâmica
2.
Can J Microbiol ; 67(4): 332-341, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136441

RESUMO

Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.


Assuntos
Chlorobi/isolamento & purificação , Chlorobi/fisiologia , Lagos/microbiologia , Chlorobi/classificação , Temperatura Alta , Lagos/química , Sulfato de Magnésio/análise , Sulfato de Magnésio/metabolismo , Fixação de Nitrogênio , Processos Fototróficos , Filogenia , Estações do Ano , Sulfetos/análise , Sulfetos/metabolismo , Washington
3.
J Cell Sci ; 131(7)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29487180

RESUMO

Microscopic green algae inhabiting desert microbiotic crusts are remarkably diverse phylogenetically, and many desert lineages have independently evolved from aquatic ancestors. Here we worked with five desert and aquatic species within the family Scenedesmaceae to examine mechanisms that underlie desiccation tolerance and release of unicellular versus multicellular progeny. Live cell staining and time-lapse confocal imaging coupled with transmission electron microscopy established that the desert and aquatic species all divide by multiple (rather than binary) fission, although progeny were unicellular in three species and multicellular (joined in a sheet-like coenobium) in two. During division, Golgi complexes were localized near nuclei, and all species exhibited dynamic rotation of the daughter cell mass within the mother cell wall at cytokinesis. Differential desiccation tolerance across the five species, assessed from photosynthetic efficiency during desiccation/rehydration cycles, was accompanied by differential accumulation of intracellular reactive oxygen species (ROS) detected using a dye sensitive to intracellular ROS. Further comparative investigation will aim to understand the genetic, ultrastructural and physiological characteristics supporting unicellular versus multicellular coenobial morphology, and the ability of representatives in the Scenedesmaceae to colonize ecologically diverse, even extreme, habitats.


Assuntos
Clorofíceas/genética , Clorófitas/genética , Fotossíntese/genética , Filogenia , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Clorofíceas/classificação , Clorofíceas/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Clorófitas/ultraestrutura , Citocinese/genética , Ecossistema , Complexo de Golgi/química , Complexo de Golgi/ultraestrutura , Luz , Espécies Reativas de Oxigênio/metabolismo , Imagem com Lapso de Tempo
4.
Arch Microbiol ; 201(10): 1351-1359, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31317227

RESUMO

A new taxon is created for the thermophilic purple nonsulfur bacterium previously designated as Rhodopseudomonas strain GI. Strain GI was isolated from a New Mexico (USA) hot spring microbial mat and grows optimally above 40 °C and to a maximum of 47 °C. Strain GI is a bacteriochlorophyll b-containing species of purple nonsulfur bacteria and displays a budding morphology, typical of species of the genus Blastochloris. Although resembling the species Blc. viridis in many respects, the absorption spectrum, carotenoid content, and lipid fatty acid profile of strain GI is distinct from that of Blc. viridis strain DSM133T and other recognized Blastochloris species. Strain GI forms its own subclade within the Blastochloris clade of purple nonsulfur bacteria based on comparative 16S rRNA gene sequences, and its genome is significantly larger than that of strain DSM133T; average nucleotide identity between the genomes of Blc. viridis and strain GI was below 85%. Moreover, concatenated sequence analyses of PufLM and DnaK clearly showed strain GI to be distinct from both Blc. viridis and Blc. sulfoviridis. Because of its unique assortment of properties, it is proposed to classify strain GI as a new species of the genus Blastochloris, as Blc. tepida, sp.n., with strain GIT designated as the type strain (= ATCC TSD-138 = DSM 106918).


Assuntos
Fontes Termais/microbiologia , Hyphomicrobiaceae/classificação , Hyphomicrobiaceae/fisiologia , Filogenia , Bacterioclorofilas/metabolismo , Classificação , DNA Bacteriano/genética , Hyphomicrobiaceae/química , Hyphomicrobiaceae/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
5.
Environ Sci Technol ; 53(24): 14273-14284, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31751506

RESUMO

Phenazine-1-carboxylic acid (PCA) is a broad-spectrum antibiotic produced by rhizobacteria in the dryland wheat fields of the Columbia Plateau. PCA and other phenazines reductively dissolve Fe and Mn oxyhydroxides in bacterial culture systems, but the impact of PCA upon Fe and Mn cycling in the rhizosphere is unknown. Here, concentrations of dithionite-extractable and poorly crystalline Fe were approximately 10% and 30-40% higher, respectively, in dryland and irrigated rhizospheres inoculated with the PCA-producing (PCA+) strain Pseudomonas synxantha 2-79 than in rhizospheres inoculated with a PCA-deficient mutant. However, rhizosphere concentrations of Fe(II) and Mn did not differ significantly, indicating that PCA-mediated redox transformations of Fe and Mn were transient or were masked by competing processes. Total Fe and Mn uptake into wheat biomass also did not differ significantly, but the PCA+ strain significantly altered Fe translocation into shoots. X-ray absorption near edge spectroscopy revealed an abundance of Fe-bearing oxyhydroxides and phyllosilicates in all rhizospheres. These results indicate that the PCA+ strain enhanced the reactivity and mobility of Fe derived from soil minerals without producing parallel changes in plant Fe uptake. This is the first report that directly links significant alterations of Fe-bearing minerals in the rhizosphere to a single bacterial trait.


Assuntos
Rizosfera , Triticum , Ferro , Minerais , Fenazinas , Microbiologia do Solo
6.
Environ Microbiol ; 20(6): 2178-2194, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687554

RESUMO

Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was upregulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA+ ) strain Pseudomonas synxantha 2-79RN10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA- ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA+ rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA- and irrigated PCA+ treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields.


Assuntos
Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Solo/química , Triticum/microbiologia , Biofilmes/crescimento & desenvolvimento , Biomassa , Fenazinas/farmacologia , Rizosfera , Microbiologia do Solo
7.
Int J Syst Evol Microbiol ; 68(6): 2116-2123, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29855404

RESUMO

There was an error in the proposed genus name in the published article, in that the genus 'Salinivirga' was effectively published while this article was in review. Therefore, the genus 'Salinivirga' should be replaced with 'Saliniramus'. For the convenience of future readers, we have included the complete corrected article below, in which all occurrences of the incorrect genus name have been amended: A halophilic bacterial strain, HL-109T, was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Saliniramus fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T=DSM 102886T). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Saliniramus and Salinarimonas (the type genus of the family).

8.
Int J Syst Evol Microbiol ; 68(5): 1591-1598, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29580321

RESUMO

A halophilic bacterial strain, HL-109T, was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Salinivirga fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T=DSM 102886T). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Salinivirga and Salinarimonas (the type genus of the family).


Assuntos
Alphaproteobacteria/classificação , Cianobactérias/classificação , Lagos/microbiologia , Filogenia , Alphaproteobacteria/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington
9.
Environ Sci Technol ; 52(20): 11632-11641, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30230819

RESUMO

In natural environments, kinetics of As(V) sequestration/release is usually coupled with dynamic Fe mineral transformation, which is further influenced by the presence of natural organic matter (NOM). Previous work mainly focused on the interactions between As(V) and Fe minerals. However, there is a lack of both mechanistic and quantitative understanding on the coupled kinetic processes in the As(V)-Fe mineral-NOM system. In this study, we investigated the effect of humic acids (HA) on the coupled kinetics of ferrihydrite transformation into hematite/goethite and sequestration of As(V) on Fe minerals. Time-resolved As(V) and HA interactions with Fe minerals during the kinetic processes were studied using aberration-corrected scanning transmission electron microscopy, chemical extractions, stirred-flow kinetic experiments, and X-ray absorption spectroscopy. Based on the experimental results, we developed a mechanistic kinetics model for As(V) fate during Fe mineral transformation. Our results demonstrated that the rates of As(V) speciation changes within Fe minerals were coupled with ferrihydrite transformation rates, and the overall reactions were slowed down by the presence of HA that sorbed on Fe minerals. Our kinetics model is able to account for variations of Fe mineral compositions, solution chemistry, and As(V) speciation, which has significant environmental implications for predicting As(V) behavior in the environment.


Assuntos
Substâncias Húmicas , Compostos de Ferro , Compostos Férricos , Cinética , Minerais , Espectroscopia por Absorção de Raios X
10.
Extremophiles ; 21(5): 891-901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681112

RESUMO

Extremely cold microbial habitats on Earth (those below -30 °C) are rare and have not been surveyed for microbes as extensively as environments in the 0 to -20 °C range. Using cryoprotected growth media incubated at -5 °C, we enriched a cold-active Pseudomonas species from -50 °C ice collected from a utility tunnel for wastewater pipes under Amundsen-Scott South Pole Station, Antarctica. The isolate, strain UC-1, is related to other cold-active Pseudomonas species, most notably P. psychrophila, and grew at -5 °C to +34-37 °C; growth of UC-1 at +3 °C was significantly faster than at +34 °C. Strain UC-1 synthesized a surface exopolymer and high levels of unsaturated fatty acids under cold growth conditions. A 16S rRNA gene diversity screen of the ice sample that yielded strain UC-1 revealed over 1200 operational taxonomic units (OTUs) distributed across eight major classes of Bacteria. Many of the OTUs were Clostridia and Bacteriodia and some of these were probably of wastewater origin. However, a significant fraction of the OTUs were Proteobacteria and Actinobacteria of likely environmental origin. Our results shed light on the lower temperature limits to life and the possible existence of functional microbial communities in ultra-cold environments.


Assuntos
Frio Extremo , Microbiota , Pseudomonas/metabolismo , Águas Residuárias/microbiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Regiões Antárticas , Clostridium/genética , Clostridium/metabolismo , Ácidos Graxos Insaturados/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Pseudomonas/genética , RNA Ribossômico 16S/genética
11.
Environ Sci Technol ; 51(18): 10605-10614, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28795818

RESUMO

Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.


Assuntos
Poluentes Ambientais/química , Compostos Férricos/química , Adsorção , Sítios de Ligação , Cátions , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos
12.
Appl Environ Microbiol ; 82(23): 6961-6972, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663028

RESUMO

Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior. Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFa and RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology to Escherichia coli TolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFa and RsaFb are not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFa and RsaFb are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFa and RsaFb led to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFa and RsaFb led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFa and RsaFb in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentusIMPORTANCE Decreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates that Caulobacter crescentus has two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closest C. crescentus homologs to TolC in E. coli, do not process TolC functionality in C. crescentus.

13.
Proc Natl Acad Sci U S A ; 110(18): E1653-60, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23569247

RESUMO

Surfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, wormlike micelles can transition from entangled to branched and multiconnected structures with increasing salt concentration. Under certain flow conditions, micellar structural transitions follow different trajectories. In this work, we consider the flow of two semidilute wormlike micellar solutions through microposts, focusing on their microstructural and rheological evolutions. Both solutions contain cetyltrimethylammonium bromide and sodium salicylate. One is weakly viscoelastic and shear thickening, whereas the other is strongly viscoelastic and shear thinning. When subjected to strain rates of ∼10(3) s(-1) and strains of ∼10(3), we observe the formation of a stable flow-induced structured phase (FISP), with entangled, branched, and multiconnected micellar bundles, as evidenced by electron microscopy. The high stretching and flow alignment in the microposts enhance the flexibility and lower the bending modulus of the wormlike micelles. As flexible micelles flow through the microposts, it becomes energetically favorable to minimize the number of end caps while concurrently promoting the formation of cross-links. The presence of spatial confinement and extensional flow also enhances entropic fluctuations, lowering the energy barrier between states, thus increasing transition frequencies between states and enabling FISP formation. Whereas the rheological properties (zero-shear viscosity, plateau modulus, and stress relaxation time) of the shear-thickening precursor are smaller than those of the FISP, those of the shear-thinning precursor are several times larger than those of the FISP. This rheological property variation stems from differences in the structural evolution from the precursor to the FISP.

14.
Proc Natl Acad Sci U S A ; 110(16): 6346-51, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23538304

RESUMO

The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 10(3) times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 10(3) times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.


Assuntos
Citocromos/metabolismo , Transporte de Elétrons/fisiologia , Compostos Férricos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Shewanella/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Immunoblotting , Anotação de Sequência Molecular , Dados de Sequência Molecular
15.
J Bacteriol ; 197(9): 1649-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733615

RESUMO

UNLABELLED: Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the ability to increase membrane production at low O2 tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O2 and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O2 tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low-O2 conditions. We also found that an intact PrrBA pathway is required for low-O2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O2 tension. IMPORTANCE: Lipids serve important functions in living systems, either as structural components of membranes or as a form of carbon storage. Understanding the mechanisms of lipid accumulation in microorganisms is important for providing insight into the assembly of biological membranes and additionally has important applications in the production of renewable fuels and chemicals. In this study, we investigate the ability of Rhodobacter sphaeroides to increase membrane production at low O2 tensions in order to house its photosynthetic apparatus. We demonstrate that this bacterium has a mechanism to increase lipid content in response to decreased O2 tension and identify a transcription factor necessary for this response. This is significant because it identifies a transcriptional regulatory pathway that can increase microbial lipid content.


Assuntos
Regulação Bacteriana da Expressão Gênica , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Anaerobiose , Ácidos Graxos/análise , Pigmentos Biológicos/análise , Rhodobacter sphaeroides/química , Fatores de Transcrição/metabolismo
16.
Int J Syst Evol Microbiol ; 65(12): 4769-4775, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419502

RESUMO

An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.50-7.75 with an optimum at pH 7.25, with 0.5-8 % oxygen with an optimum at 1-2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml- 1. Non-motile, rod-shaped cells 1.4-2.4 × 0.4-0.6 µm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA-DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain.


Assuntos
Bactérias/classificação , Fontes Termais/microbiologia , Filogenia , Tiossulfatos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Nevada , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Int J Syst Evol Microbiol ; 63(Pt 12): 4675-4682, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23950149

RESUMO

Several closely related, thermophilic and cellulolytic bacterial strains, designated JKG1(T), JKG2, JKG3, JKG4 and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1(T) had cells of diameter 0.7-0.9 µm and length ~2.0 µm that formed non-branched, multicellular filaments reaching >300 µm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 °C, with an optimum of 55 °C. The pH range for growth was pH 5.6-9.0, with an optimum of pH 7.5. JKG1(T) grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, CM-cellulose, filter paper, microcrystalline cellulose, xylan, starch, Casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5 % to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5 %) were C18 : 0, anteiso-C17 : 0, iso-C18 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and C17 : 0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose and xylose. Morphological, phylogenetic and chemotaxonomic results suggest that JKG1(T) is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov. The type strain of Kallotenue papyrolyticum gen. nov., sp. nov. is JKG1(T) ( = DSM 26889(T) = JCM 19132(T)).


Assuntos
Celulose/metabolismo , Chloroflexi/classificação , Fontes Termais/microbiologia , Filogenia , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Nevada , Peptidoglicano/química , RNA Ribossômico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Environ Sci Technol ; 47(10): 5162-70, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23593962

RESUMO

A multiscale approach was designed to study the effects of flagella on deposition dynamics of Azotobacter vinelandii in porous media, independent of motility. In a radial stagnation point flow cell (RSPF), the deposition rate of a flagellated strain with limited motility, DJ77, was higher than that of a nonflagellated (Fla(-)) strain on quartz. In contrast, Fla(-) strain deposition exceeded that of DJ77 in two-dimensional silicon microfluidic models (micromodels) and in columns packed with glass beads. Both micromodel and column experiments showed decreasing deposition over time, suggesting that approaching cells were blocked from deposition by previously deposited cells. Modeling results showed that blocking became effective for DJ77 strain at lower ionic strengths (1 mM and 10 mM), while for the Fla(-) strain, blocking was similar at all ionic strengths. In late stages of micromodel experiments, ripening effects were also observed, and these appeared earlier for the Fla(-) strain. In RSPF and column experiments, deposition of the flagellated strain was influenced by ionic strength, while ionic strength dependence was not observed for the Fla(-) strain. The observations in all three setups suggested flagella affect deposition dynamics and, in particular, result in greater sensitivity to ionic strength.


Assuntos
Azotobacter vinelandii/fisiologia , Flagelos/metabolismo , Azotobacter vinelandii/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética
19.
mBio ; 14(4): e0120323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37389444

RESUMO

The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides' divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.


Assuntos
Alphaproteobacteria , Peptidil Transferases , Peptidil Transferases/metabolismo , Peptidoglicano/metabolismo , Divisão Celular , Lipoproteínas/genética , Lipoproteínas/metabolismo , Parede Celular/metabolismo , Bactérias/metabolismo , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
Biochem Soc Trans ; 40(6): 1257-60, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176464

RESUMO

The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decahaem cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system has been developed that contains Methyl Viologen as an internalized electron carrier and valinomycin as a membrane-associated cation exchanger. These proteoliposomes can be used as a model system to investigate MtrCAB function.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Lipossomos/química , Shewanella/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Transporte de Elétrons , Modelos Biológicos , Oxirredução , Paraquat/química , Valinomicina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa