Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Rev Neurosci ; 21(4): 213-229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161339

RESUMO

Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.


Assuntos
Canais de Cálcio/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Humanos , Transporte Proteico
2.
Proc Natl Acad Sci U S A ; 119(10): e2110415119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238638

RESUMO

SignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms. In humans, this motif is found in subunits of calcium channels that are implicated in pain and neurodevelopmental disorders. Our findings suggest that γ-aminobutyric acid-derived drugs bind to the same motif in human proteins that binds natural ligands in bacterial receptors, thus enabling future improvement of important drugs.


Assuntos
Archaea/química , Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Motivos de Aminoácidos , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Membrana/metabolismo
3.
Annu Rev Pharmacol Toxicol ; 60: 1-6, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31914892

RESUMO

"Ion Channels and Neuropharmacology: From the Past to the Future" is the main theme of articles in Volume 60 of the Annual Review of Pharmacology and Toxicology. Reviews in this volume discuss a wide spectrum of therapeutically relevant ion channels and GPCRs with a particular emphasis on structural studies that elucidate drug binding sites and mechanisms of action. The regulation of ion channels by second messengers, including Ca2+ and cyclic AMP, and lipid mediators is also highly relevant to several of the ion channels discussed, including KCNQ channels, HCN channels, L-type Ca2+ channels, and AMPA receptors, as well as the aquaporin channels. Molecular identification of exactly where drugs bind in the structure not only elucidates their mechanism of action but also aids future structure-based drug discovery efforts to focus on relevant pharmacophores. The ion channels discussed here are targets for multiple nervous system diseases, including epilepsy and neuropathic pain. This theme complements several previous themes, including "New Therapeutic Targets," "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development," and "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology."


Assuntos
Descoberta de Drogas/métodos , Canais Iônicos/metabolismo , Desenvolvimento de Medicamentos/métodos , Humanos , Neurofarmacologia
4.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293990

RESUMO

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Assuntos
Canais de Cálcio Tipo N , Epilepsia , Idade de Início , Animais , Cálcio , Canais de Cálcio , Canais de Cálcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neurônios
5.
J Neurosci ; 41(10): 2070-2075, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33558431

RESUMO

In this short review, I describe from personal experience how every step in the career of any scientist, no matter how disjointed and pragmatic each might seem at the time, will almost inevitably meld together, to help us all tackle novel projects. My postdoctoral research in Paul Greengard's laboratory, where I investigated neurotransmitter-mediated phosphorylation of Synapsin I, was instrumental in my career progression, and Paul's support was instrumental in my ability to make a leap into independent research.


Assuntos
Escolha da Profissão , Neurotransmissores , Sinapsinas , Humanos , Fosforilação
6.
J Physiol ; 600(24): 5333-5351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377048

RESUMO

In the mammalian brain, presynaptic CaV 2 channels play a pivotal role in synaptic transmission by mediating fast neurotransmitter exocytosis via influx of Ca2+ into the active zone of presynaptic terminals. However, the distribution and modulation of CaV 2.2 channels at plastic hippocampal synapses remains to be elucidated. Here, we assess CaV 2.2 channels during homeostatic synaptic plasticity, a compensatory form of homeostatic control preventing excessive or insufficient neuronal activity during which extensive active zone remodelling has been described. We show that chronic silencing of neuronal activity in mature hippocampal cultures resulted in elevated presynaptic Ca2+ transients, mediated by increased levels of CaV 2.2 channels at the presynaptic site. This work focused further on the role of α2 δ-1 subunits, important regulators of synaptic transmission and CaV 2.2 channel abundance at the presynaptic membrane. We found that α2 δ-1 overexpression reduces the contribution of CaV 2.2 channels to total Ca2+ flux without altering the amplitude of the Ca2+ transients. Levels of endogenous α2 δ-1 decreased during homeostatic synaptic plasticity, whereas the overexpression of α2 δ-1 prevented homeostatic synaptic plasticity in hippocampal neurons. Together, this study reveals a key role for CaV 2.2 channels and novel roles for α2 δ-1 during synaptic plastic adaptation. KEY POINTS: The roles of CaV 2.2 channels and α2 δ-1 in homeostatic synaptic plasticity in hippocampal neurons in culture were examined. Chronic silencing of neuronal activity resulted in elevated presynaptic Ca2+ transients, mediated by increased levels of CaV 2.2 channels at presynaptic sites. The level of endogenous α2 δ-1 decreased during homeostatic synaptic plasticity, whereas overexpression of α2 δ-1 prevented homeostatic synaptic plasticity in hippocampal neurons. Together, this study reveals a key role for CaV 2.2 channels and novel roles for α2 δ-1 during synaptic plastic adaptation.


Assuntos
Plasticidade Neuronal , Terminações Pré-Sinápticas , Animais , Terminações Pré-Sinápticas/fisiologia , Neurônios/fisiologia , Hipocampo , Transmissão Sináptica/fisiologia , Plásticos , Mamíferos
7.
EMBO J ; 37(3): 427-445, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29335280

RESUMO

The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel ß3 (Scn3b), rather than the ß1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Células Receptoras Sensoriais/metabolismo , Acetamidas/farmacologia , Analgésicos/farmacologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lacosamida , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico/fisiologia , Sinaptotagmina II/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Subunidade beta-3 do Canal de Sódio Disparado por Voltagem/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(52): 26816-26822, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31826954

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) often show hallmarks of type 2 diabetes mellitus (T2DM). However, the causal link between ALS and T2DM has remained a mystery. We now demonstrate that 60% of ALS patients with T2DM (ALS-T2DM) have sera that exaggerated K+-induced increases in cytosolic free Ca2+ concentration ([Ca2+]i) in mouse islet cells. The effect was attributed to the presence of pathogenic immunoglobulin Gs (IgGs) in ALS-T2DM sera. The pathogenic IgGs immunocaptured the voltage-dependent Ca2+ (CaV) channel subunit CaVα2δ1 in the plasma membrane enhancing CaV1 channel-mediated Ca2+ influx and [Ca2+]i, resulting in impaired mitochondrial function. Consequently, impairments in [Ca2+]i dynamics, insulin secretion, and cell viability occurred. These data reveal that patients with ALS-T2DM carry cytotoxic ALS-T2DM-IgG autoantibodies that serve as a causal link between ALS and T2DM by immunoattacking CaVα2δ1 subunits. Our findings may lay the foundation for a pharmacological treatment strategy for patients suffering from a combination of these diseases.

9.
Proc Natl Acad Sci U S A ; 115(51): E12043-E12052, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487217

RESUMO

The auxiliary α2δ calcium channel subunits play key roles in voltage-gated calcium channel function. Independent of this, α2δ-1 has also been suggested to be important for synaptogenesis. Using an epitope-tagged knockin mouse strategy, we examined the effect of α2δ-1 on CaV2.2 localization in the pain pathway in vivo, where CaV2.2 is important for nociceptive transmission and α2δ-1 plays a critical role in neuropathic pain. We find CaV2.2 is preferentially expressed on the plasma membrane of calcitonin gene-related peptide-positive small nociceptors. This is paralleled by strong presynaptic expression of CaV2.2 in the superficial spinal cord dorsal horn. EM-immunogold localization shows CaV2.2 predominantly in active zones of glomerular primary afferent terminals. Genetic ablation of α2δ-1 abolishes CaV2.2 cell-surface expression in dorsal root ganglion neurons and dramatically reduces dorsal horn expression. There was no effect of α2δ-1 knockout on other dorsal horn pre- and postsynaptic markers, indicating the primary afferent pathways are not otherwise affected by α2δ-1 ablation.


Assuntos
Técnicas de Ablação/métodos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Dor/metabolismo , Transporte Proteico/fisiologia , Animais , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Neuralgia/metabolismo , Neurônios/metabolismo , Dor/enfermagem , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Medula Espinal/patologia
10.
Neurobiol Dis ; 138: 104779, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31991246

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism, results from the loss of fragile X mental retardation protein (FMRP). We have recently identified a direct interaction of FMRP with voltage-gated Ca2+ channels that modulates neurotransmitter release. In the present study we used a combination of optophysiological tools to investigate the impact of FMRP on the targeting of voltage-gated Ca2+ channels to the active zones in neuronal presynaptic terminals. We monitored Ca2+ transients at synaptic boutons of dorsal root ganglion (DRG) neurons using the genetically-encoded Ca2+ indicator GCaMP6f tagged to synaptophysin. We show that knock-down of FMRP induces an increase of the amplitude of the Ca2+ transient in functionally-releasing presynaptic terminals, and that this effect is due to an increase of N-type Ca2+ channel contribution to the total Ca2+ transient. Dynamic regulation of CaV2.2 channel trafficking is key to the function of these channels in neurons. Using a CaV2.2 construct with an α-bungarotoxin binding site tag, we further investigate the impact of FMRP on the trafficking of CaV2.2 channels. We show that forward trafficking of CaV2.2 channels from the endoplasmic reticulum to the plasma membrane is reduced when co-expressed with FMRP. Altogether our data reveal a critical role of FMRP on localization of CaV channels to the presynaptic terminals and how its defect in a context of FXS can profoundly affect synaptic transmission.


Assuntos
Canais de Cálcio/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Transmissão Sináptica/fisiologia
11.
Br J Psychiatry ; 216(5): 250-253, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31230606

RESUMO

We reappraise the psychiatric potential of calcium channel blockers (CCBs). First, voltage-gated calcium channels are risk genes for several disorders. Second, use of CCBs is associated with altered psychiatric risks and outcomes. Third, research shows there is an opportunity for brain-selective CCBs, which are better suited to psychiatric indications.


Assuntos
Bloqueadores dos Canais de Cálcio , Transtornos Mentais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Genômica , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética
12.
J Biol Chem ; 292(49): 20010-20031, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972185

RESUMO

Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I-II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I-II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Calmodulina/fisiologia , Caveolina 3/metabolismo , Ativação do Canal Iônico , Animais , Sítios de Ligação , Encéfalo/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Coração/fisiologia , Humanos , Invertebrados , Periodicidade
13.
Nature ; 486(7401): 122-5, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22678293

RESUMO

Synaptic neurotransmitter release is driven by Ca(2+) influx through active zone voltage-gated calcium channels (VGCCs). Control of active zone VGCC abundance and function remains poorly understood. Here we show that a trafficking step probably sets synaptic VGCC levels in rats, because overexpression of the pore-forming α1(A) VGCC subunit fails to change synaptic VGCC abundance or function. α2δs are a family of glycosylphosphatidylinositol (GPI)-anchored VGCC-associated subunits that, in addition to being the target of the potent neuropathic analgesics gabapentin and pregabalin (α2δ-1 and α2δ-2), were also identified in a forward genetic screen for pain genes (α2δ-3). We show that these proteins confer powerful modulation of presynaptic function through two distinct molecular mechanisms. First, α2δ subunits set synaptic VGCC abundance, as predicted from their chaperone-like function when expressed in non-neuronal cells. Second, α2δs configure synaptic VGCCs to drive exocytosis through an extracellular metal ion-dependent adhesion site (MIDAS), a conserved set of amino acids within the predicted von Willebrand A domain of α2δ. Expression of α2δ with an intact MIDAS motif leads to an 80% increase in release probability, while simultaneously protecting exocytosis from blockade by an intracellular Ca(2+) chelator. α2δs harbouring MIDAS site mutations still drive synaptic accumulation of VGCCs; however, they no longer change release probability or sensitivity to intracellular Ca(2+) chelators. Our data reveal dual functionality of these clinically important VGCC subunits, allowing synapses to make more efficient use of Ca(2+) entry to drive neurotransmitter release.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Exocitose , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Potenciais de Ação , Animais , Canais de Cálcio/biossíntese , Canais de Cálcio Tipo L , Sinalização do Cálcio , Camundongos , Probabilidade , Ratos
14.
Pharmacol Rev ; 67(4): 821-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26362469

RESUMO

Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Canais de Cálcio/classificação , Canais de Cálcio/genética , Canais de Cálcio Tipo L/farmacologia , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo N/farmacologia , Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio Tipo T/farmacologia , Canais de Cálcio Tipo T/fisiologia , Doenças Cardiovasculares/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transtornos da Audição/fisiopatologia , Humanos , Doenças Metabólicas/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Cegueira Noturna/fisiopatologia , Fosfolipídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
15.
J Biol Chem ; 291(39): 20402-16, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27489103

RESUMO

CaVß subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVß subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVß subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVß subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVß subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVß subunit.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Lipoilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação/fisiologia , Substituição de Aminoácidos , Animais , Canais de Cálcio Tipo N/genética , Linhagem Celular , Membrana Celular/genética , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/genética , Estrutura Secundária de Proteína , Coelhos , Ratos
16.
Nat Rev Neurosci ; 13(8): 542-55, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22805911

RESUMO

The voltage-gated calcium channel α(2)δ and ß subunits are traditionally considered to be auxiliary subunits that enhance channel trafficking, increase the expression of functional calcium channels at the plasma membrane and influence the channels' biophysical properties. Accumulating evidence indicates that these subunits may also have roles in the nervous system that are not directly linked to calcium channel function. For example, ß subunits may act as transcriptional regulators, and certain α(2)δ subunits may function in synaptogenesis. The aim of this Review is to examine both the classic and novel roles for these auxiliary subunits in voltage-gated calcium channel function and beyond.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Animais , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia
17.
Proc Natl Acad Sci U S A ; 111(24): 8979-84, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889613

RESUMO

CaV1 and CaV2 voltage-gated calcium channels are associated with ß and α2δ accessory subunits. However, examination of cell surface-associated CaV2 channels has been hampered by the lack of antibodies to cell surface-accessible epitopes and of functional exofacially tagged CaV2 channels. Here we report the development of fully functional CaV2.2 constructs containing inserted surface-accessible exofacial tags, which allow visualization of only those channels at the plasma membrane, in both a neuronal cell line and neurons. We first examined the effect of the auxiliary subunits. Although α2δ subunits copurify with CaV2 channels, it has recently been suggested that this interaction is easily disrupted and nonquantitative. We have now tested whether α2δ subunits are associated with these channels at the cell surface. We found that, whereas α2δ-1 is readily observed at the plasma membrane when expressed alone, it appears absent when coexpressed with CaV2.2/ß1b, despite our finding that α2δ-1 increases plasma-membrane CaV2.2 expression. However, this was due to occlusion of the antigenic epitope by association with CaV2.2, as revealed by antigen retrieval; thus, our data provide evidence for a tight interaction between α2δ-1 and the α1 subunit at the plasma membrane. We further show that, although CaV2.2 cell-surface expression is reduced by gabapentin in the presence of wild-type α2δ-1 (but not a gabapentin-insensitive α2δ-1 mutant), the interaction between CaV2.2 and α2δ-1 is not disrupted by gabapentin. Altogether, these results demonstrate that CaV2.2 and α2δ-1 are intimately associated at the plasma membrane and allow us to infer a region of interaction.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Aminas/química , Animais , Cálcio/química , Canais de Cálcio Tipo L , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Cicloexanocarboxílicos/química , Eletrofisiologia , Epitopos/química , Gabapentina , Gânglios Espinais/metabolismo , Ligantes , Camundongos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Estrutura Terciária de Proteína , Coelhos , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química
18.
J Neurosci ; 35(43): 14636-52, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511252

RESUMO

N-type voltage-gated calcium (Ca(V)2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of Ca(V)2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of Ca(V)2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing Ca(V)2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of Ca(V)2.2 isoforms. D2R slowed the endocytosis of Ca(V)2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/fisiologia , Processamento Alternativo/genética , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/fisiologia , Neurônios/metabolismo , Axônios/metabolismo , Brefeldina A/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Endocitose/fisiologia , Éxons/genética , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Humanos , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Receptores de Dopamina D2/metabolismo , Transfecção
19.
J Neurosci ; 35(15): 5891-903, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878262

RESUMO

As auxiliary subunits of voltage-gated Ca(2+) channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca(2+) responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca(2+) transients are not dependent on extracellular Ca(2+) and do not require Ca(2+) release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca(2+) uptake demonstrates that α2δ-1-mediated prolonged Ca(2+) signals are buffered by mitochondria, preferentially activated by Ca(2+) influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca(2+) signaling in dorsal root ganglion neurons.


Assuntos
Canais de Cálcio Tipo N/genética , Sinalização do Cálcio/fisiologia , Células Receptoras Sensoriais/metabolismo , Regulação para Cima/fisiologia , Animais , Animais Recém-Nascidos , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Indóis/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Nifedipino/farmacologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Regulação para Cima/efeitos dos fármacos , ômega-Conotoxina GVIA/farmacologia
20.
J Physiol ; 594(19): 5369-90, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27273705

RESUMO

Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.


Assuntos
Canais de Cálcio/fisiologia , Subunidades Proteicas/fisiologia , Animais , Epilepsia/fisiopatologia , Humanos , Transtornos Mentais/fisiopatologia , Neuralgia/fisiopatologia , Cegueira Noturna/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa