RESUMO
Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.
Assuntos
Citoesqueleto de Actina , Actinas , Forminas , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sítios de Ligação , Microscopia Crioeletrônica , Forminas/química , Forminas/metabolismo , Forminas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Moleculares , Profilinas/química , Profilinas/metabolismo , Profilinas/ultraestrutura , Ligação ProteicaRESUMO
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Assuntos
Actinas , Tropomodulina , Animais , Actinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Miofibrilas/metabolismo , Citoesqueleto de Actina/metabolismo , Sarcômeros/metabolismo , Mamíferos/metabolismoRESUMO
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Capeamento de Actina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Conformação ProteicaRESUMO
Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament. Several cofactors drive the transition toward the active state, including ATP binding to the Arps, WASP-family nucleation-promoting factors (NPFs), actin monomers, and binding of Arp2/3 complex to the mother filament. The precise contribution of each cofactor to activation is poorly understood. We report the 3.32-Å resolution cryo-electron microscopy structure of a transition state of Arp2/3 complex activation with bound constitutively dimeric NPF. Arp2/3 complex-binding region of the NPF N-WASP was fused C-terminally to the α and ß subunits of the CapZ heterodimer. One arm of the NPF dimer binds Arp2 and the other binds actin and Arp3. The conformation of the complex is intermediate between those of inactive and active Arp2/3 complex. Arp2, Arp3, and actin also adopt intermediate conformations between monomeric (G-actin) and filamentous (F-actin) states, but only actin hydrolyzes ATP. In solution, the transition complex is kinetically shifted toward the short-pitch conformation and has higher affinity for F-actin than inactive Arp2/3 complex. The results reveal how all the activating cofactors contribute in a coordinated manner toward Arp2/3 complex activation.
Assuntos
Multimerização Proteica , Ligação Proteica , Modelos Moleculares , Actinas/química , Actinas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Humanos , Animais , CamundongosRESUMO
Force generation and motility by actomyosin in nonmuscle cells are spatially regulated by â¼40 tropomyosin (Tpm) isoforms. The means by which Tpms are targeted to specific cellular regions and the mechanisms that result in differential activity of myosin paralogs are unknown. We show that Tpm3.1 and Tpm1.7 inhibit Myosin-IC (Myo1C), with Tpm1.7 more effectively reducing the number of gliding filaments than Tpm3.1. Strikingly, cosedimentation and fluorescence microscopy assays revealed that Tpm3.1 is displaced from actin by Myo1C and not by myosin-II. In contrast, Tpm1.7 is only weakly displaced by Myo1C. Unlike other characterized myosins, Myo1C motility is inhibited by Tpm when the Tpm-actin filament is activated by myosin-II. These results point to a mechanism for the exclusion of myosin-I paralogs from cellular Tpm-decorated actin filaments that are activated by other myosins. Additionally, our results suggest a potential mechanism for myosin-induced Tpm sorting in cells.
Assuntos
Citoesqueleto de Actina , Miosina Tipo I , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Isoformas de Proteínas/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Animais , Actinas/metabolismo , Miosina Tipo II/metabolismo , CamundongosRESUMO
Actin is the most abundant protein in the cytoplasm of eukaryotic cells and interacts with hundreds of proteins to perform essential functions, including cell motility and cytokinesis. Numerous diseases are caused by mutations in actin, but studying the biochemistry of actin mutants is difficult without a reliable method to obtain recombinant actin. Moreover, biochemical studies have typically used tissue-purified α-actin, whereas humans express six isoforms that are nearly identical but perform specialized functions and are difficult to obtain in isolation from natural sources. Here, we describe a solution to the problem of actin expression and purification. We obtain high yields of actin isoforms in human Expi293F cells. Experiments along the multistep purification protocol demonstrate the removal of endogenous actin and the functional integrity of recombinant actin isoforms. Proteomics analysis of endogenous vs. recombinant actin isoforms confirms the presence of native posttranslational modifications, including N-terminal acetylation achieved after affinity-tag removal using the actin-specific enzyme Naa80. The method described facilitates studies of actin under fully native conditions to determine differences among isoforms and the effects of disease-causing mutations that occur in all six isoforms.
Assuntos
Actinas , Processamento de Proteína Pós-Traducional , Acetilação , Actinas/genética , Actinas/metabolismo , Movimento Celular , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
MIRO (mitochondrial Rho GTPase) consists of two GTPase domains flanking two Ca2+-binding EF-hand domains. A C-terminal transmembrane helix anchors MIRO to the outer mitochondrial membrane, where it functions as a general adaptor for the recruitment of cytoskeletal proteins that control mitochondrial dynamics. One protein recruited by MIRO is TRAK (trafficking kinesin-binding protein), which in turn recruits the microtubule-based motors kinesin-1 and dynein-dynactin. The mechanism by which MIRO interacts with TRAK is not well understood. Here, we map and quantitatively characterize the interaction of human MIRO1 and TRAK1 and test its potential regulation by Ca2+ and/or GTP binding. TRAK1 binds MIRO1 with low micromolar affinity. The interaction was mapped to a fragment comprising MIRO1's EF-hands and C-terminal GTPase domain and to a conserved sequence motif within TRAK1 residues 394 to 431, immediately C-terminal to the Spindly motif. This sequence is sufficient for MIRO1 binding in vitro and is necessary for MIRO1-dependent localization of TRAK1 to mitochondria in cells. MIRO1's EF-hands bind Ca2+ with dissociation constants (KD) of 3.9 µM and 300 nM. This suggests that under cellular conditions one EF-hand may be constitutively bound to Ca2+ whereas the other EF-hand binds Ca2+ in a regulated manner, depending on its local concentration. Yet, the MIRO1-TRAK1 interaction is independent of Ca2+ binding to the EF-hands and of the nucleotide state (GDP or GTP) of the C-terminal GTPase. The interaction is also independent of TRAK1 dimerization, such that a TRAK1 dimer can be expected to bind two MIRO1 molecules on the mitochondrial surface.
Assuntos
Cinesinas , Mitocôndrias , Humanos , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (â¼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (â¼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.
Assuntos
Calmodulina , Miosinas , Humanos , Actinas/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Células HeLa , Miosinas/metabolismoRESUMO
Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.
Assuntos
Citoesqueleto de Actina , Actinas , Animais , Camundongos , Humanos , Actinas/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Linhagem Celular , Microtúbulos/metabolismoRESUMO
PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing. CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of 'ribosomopathies'.
RESUMO
Serotonin [5-hydroxytryptamine (5-HT)] modulates ovarian function. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP), has been used to treat depression. However, the effects of 5-HTP on ovarian and reproductive physiology remain unknown. In this research, we analysed the impact of 5-HTP on the monoaminergic system and its interactions with the reproductive axis and ovarian estradiol secretion when administered by distinct routes. Female rats 30 days of age were injected with 5-HTP i.p. (100 mg/kg), into the ovarian bursa (1.5 µg/40 µL) or into the median raphe nucleus (20 µg/2.5 µL) and were killed 60 or 120 min after injection. As controls, we used rats of the same age injected with vehicle (0.9% NaCl). Monoamine, gonadotrophin and steroid ovarian hormone concentrations were measured. The injection of 5-HTP either i.p. or directly into the ovarian bursa increased the concentrations of 5-HT and the metabolite 5-hydroxyindole-3-acetic acid in the ovary. For both routes of administration, the serum concentration of estradiol increased. After i.p. injection of 5-HTP, the concentrations of luteinizing hormone were decreased and follicle-stimulating hormone increased after 120 min. Micro-injection of 5-HTP into the median raphe nucleus increased the concentrations of 5-HT in the anterior hypothalamus and dopamine in the medial hypothalamus after 120 min. Our results suggest that the administration of 5-HTP either i.p. or directly into the ovarian bursa enhances ovarian estradiol secretion.
Assuntos
5-Hidroxitriptofano , Serotonina , Feminino , Ratos , Animais , 5-Hidroxitriptofano/farmacologia , 5-Hidroxitriptofano/metabolismo , Serotonina/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Ovário/metabolismo , Hipotálamo/metabolismoRESUMO
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an â¼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first â¼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Assuntos
Actinas , Rickettsia conorii , Actinas/metabolismo , Forminas/metabolismo , Rickettsia conorii/metabolismo , Microscopia Crioeletrônica , Estrutura Terciária de Proteína , Citoesqueleto de Actina/metabolismoRESUMO
In brief: The SCN regulates ovulation by stimulating the preovulatory surge of gonadotropins. This study revealed an additional role in the sensitization of the hypothalamus to estradiol that changes along the estrous cycle and the side of the nucleus. Abstract: Ovulation is timed by neural signals originating at the suprachiasmatic nucleus (SCN) that trigger ovulation when converge with high estradiol levels, which indicates the maturation of ovarian follicles. We have shown that the hypothalamic regulation of ovulation is asymmetrical and we hypothesized that the paired SCN could contribute to such symmetries. We unilaterally lesioned the SCN of rats at each stage of the estrous cycle and evaluated the acute effects on the progression of their estrous cycle, follicular development and ovulation. Lesions prevented progression of the estrous cycle when performed in estrus/metestrus but not in diestrus/proestrus. Abnormalities in follicular development were observed in the nonovulating lesioned rats and this was independent of the side of the SCN destroyed and the stage of the cycle when surgery was performed. Groups of lesioned rats were then hormonally primed with GnRH or estradiol to assess the neuroendocrine pathway altered by the treatment. GnRH restored ovulation, suggesting that both SCN are needed for proper triggering of the preovulatory surge of GnRH and that unilateral lesion does not impair the sensitivity of the pituitary or the ovary to GnRH and gonadotropins, respectively. With regard to restoring ovulation, estradiol was asymmetrically effective in rats lesioned in estrous, partially effective in rats operated at diestrus and ineffective in rats at metestrus. Our results indicate that the SCN regulates the activity of the hypothalamic-pituitary-ovarian axis not only by modulating the preovulatory surge of GnRH/gonadotropins but also by promoting the hypothalamic integration of estrogenic signals from the ovaries in an asymmetric and stage-dependent fashion.
Assuntos
Estradiol , Ciclo Estral , Feminino , Ratos , Animais , Estradiol/farmacologia , Retroalimentação , Núcleo Supraquiasmático/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Ovulação , Gonadotropinas/farmacologiaRESUMO
In brief: In the proestrus day, the neural and endocrine signals modulate ovarian function. This study shows vagus nerve plays a role in the multisynaptic pathways of communication between the suprachiasmatic nucleus and the ovaries where such neural information determines ovulation. Abstract: The suprachiasmatic nucleus (SCN) regulates the activity of several peripheral organs through a parasympathetic-sympathetic pathway. Previously, we demonstrated that atropine (ATR) microinjection in the right SCN of rats during proestrus blocks ovulation. In the present study, we analysed whether the vagus nerve is one of the neural pathways by which the SCN regulates ovulation. For this, CIIZ-V strain cyclic rats on the day of proestrus were microinjected with a saline solution (vehicle) or ATR in the right or left SCN, which was followed by ventral laparotomy or ipsilateral vagotomy to the microinjection side. Some animal groups were sacrificed (i) on the same day of the surgery to measure oestradiol, progesterone and luteinizing hormone (LH) levels or (ii) at 24 h after surgery to evaluate ovulation. The left vagotomy in rats microinjected with ATR in the left SCN did not modify ovulation. In rats with ATR microinjection in the right SCN, the right vagotomy increased the levels of steroids and LH on the proestrus and ovulatory response. The present results suggest that the right vagus nerve plays a role in the multisynaptic pathways of communication between the SCN and the ovaries and indicate that such neural information participates in the regulation of the oestradiol and progesterone surge, which triggers the preovulatory peak of LH and determines ovulation.
Assuntos
Hormônio Luteinizante , Progesterona , Feminino , Ratos , Animais , Progesterona/metabolismo , Hormônio Luteinizante/metabolismo , Núcleo Supraquiasmático/metabolismo , Ovulação/fisiologia , Estradiol/metabolismo , Atropina/farmacologia , Atropina/metabolismo , Nervo Vago/metabolismoRESUMO
No disponible.
Assuntos
COVID-19 , Humanos , Prevalência , Universidades , Obesidade , EstudantesRESUMO
Biochemical studies require large quantities of proteins, which are typically obtained using bacterial overexpression. However, the folding machinery in bacteria is inadequate for expressing many mammalian proteins, which additionally undergo posttranslational modifications (PTMs) that bacteria, yeast, or insect cells cannot perform. Many proteins also require native N- and C-termini and cannot tolerate extra tag amino acids for proper function. Tropomyosin (Tpm), a coiled coil protein that decorates most actin filaments in cells, requires both native N- and C-termini and PTMs, specifically N-terminal acetylation (Nt-acetylation), to polymerize along actin filaments. Here, we describe a new method that combines native protein expression in human cells with an intein-based purification tag that can be precisely removed after purification. Using this method, we expressed several nonmuscle Tpm isoforms (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2) and the muscle isoform Tpm1.1. Proteomics analysis revealed that human-cell-expressed Tpms present various PTMs, including Nt-acetylation, Ser/Thr phosphorylation, Tyr phosphorylation, and Lys acetylation. Depending on the Tpm isoform (humans express up to 40 Tpm isoforms), Nt-acetylation occurs on either the initiator methionine or on the second residue after removal of the initiator methionine. Human-cell-expressed Tpms bind F-actin differently than their Escherichia coli-expressed counterparts, with or without N-terminal extensions intended to mimic Nt-acetylation, and they can form heterodimers in cells and in vitro. The expression method described here reveals previously unknown features of nonmuscle Tpms and can be used in future structural and biochemical studies with Tpms and other proteins, as shown here for α-synuclein.
Assuntos
Expressão Gênica , Processamento de Proteína Pós-Traducional , Tropomiosina/biossíntese , Linhagem Celular , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Tropomiosina/genéticaRESUMO
Myosins adjust their power outputs in response to mechanical loads in an isoform-dependent manner, resulting in their ability to dynamically adapt to a range of motile challenges. Here, we reveal the structural basis for force-sensing based on near-atomic resolution structures of one rigor and two ADP-bound states of myosin-IB (myo1b) bound to actin, determined by cryo-electron microscopy. The two ADP-bound states are separated by a 25° rotation of the lever. The lever of the first ADP state is rotated toward the pointed end of the actin filament and forms a previously unidentified interface with the N-terminal subdomain, which constitutes the upper half of the nucleotide-binding cleft. This pointed-end orientation of the lever blocks ADP release by preventing the N-terminal subdomain from the pivoting required to open the nucleotide binding site, thus revealing how myo1b is inhibited by mechanical loads that restrain lever rotation. The lever of the second ADP state adopts a rigor-like orientation, stabilized by class-specific elements of myo1b. We identify a role for this conformation as an intermediate in the ADP release pathway. Moreover, comparison of our structures with other myosins reveals structural diversity in the actomyosin binding site, and we reveal the high-resolution structure of actin-bound phalloidin, a potent stabilizer of filamentous actin. These results provide a framework to understand the spectrum of force-sensing capacities among the myosin superfamily.
Assuntos
Actinas/química , Actinas/metabolismo , Microscopia Crioeletrônica/métodos , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Faloidina/química , Faloidina/metabolismo , Conformação ProteicaRESUMO
Actin, one of the most abundant proteins in nature, participates in countless cellular functions ranging from organelle trafficking and pathogen motility to cell migration and regulation of gene transcription. Actin's cellular activities depend on the dynamic transition between its monomeric and filamentous forms, a process exquisitely regulated in cells by a large number of actin-binding and signaling proteins. Additionally, several posttranslational modifications control the cellular functions of actin, including most notably N-terminal (Nt)-acetylation, a prevalent modification throughout the animal kingdom. However, the biological role and mechanism of actin Nt-acetylation are poorly understood, and the identity of actin's N-terminal acetyltransferase (NAT) has remained a mystery. Here, we reveal that NAA80, a suggested NAT enzyme whose substrate specificity had not been characterized, is Nt-acetylating actin. We further show that actin Nt-acetylation plays crucial roles in cytoskeletal assembly in vitro and in cells. The absence of Nt-acetylation leads to significant differences in the rates of actin filament depolymerization and elongation, including elongation driven by formins, whereas filament nucleation by the Arp2/3 complex is mostly unaffected. NAA80-knockout cells display severely altered cytoskeletal organization, including an increase in the ratio of filamentous to globular actin, increased filopodia and lamellipodia formation, and accelerated cell motility. Together, the results demonstrate NAA80's role as actin's NAT and reveal a crucial role for actin Nt-acetylation in the control of cytoskeleton structure and dynamics.
Assuntos
Acetiltransferases/metabolismo , Citoesqueleto de Actina/enzimologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/fisiologia , Acetiltransferases N-Terminal/metabolismo , Pseudópodes/enzimologia , Acetilação , Acetiltransferases/genética , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Células HEK293 , Humanos , Acetiltransferases N-Terminal/genética , Pseudópodes/genéticaRESUMO
In rats with polycystic ovary syndrome (PCOS) induced by injection of estradiol valerate (EV), unilateral or bilateral section of the vagus nerve restores ovulatory function in 75% of animals, suggesting that the vagus nerve participates in the development of PCOS. Since the vagus nerve is a mixed nerve through which mainly cholinergic-type information passes, the objective of the present study was to analyze whether acetylcholine (ACh) is involved in the development of PCOS. Ten-day-old rats were injected with 2.0 mg EV, and at 60 days of age, they were microinjected on the day of diestrus in the bursa of the left or right ovary with 100 or 700 mg/kg of ovarian weight atropine, a blocker of muscarinic receptors, and sacrificed for histopathological examination after the surgery. Animals with PCOS microinjected with 100 mg of atropine showed a lack of ovulation, lower serum concentrations of progesterone and testosterone, and cysts. Histology of the ovaries of animals microinjected with 700 mg of atropine showed corpus luteum and follicles at different stages of development, which was accompanied by a lower concentration of progesterone and testosterone. These results allow us to suggest that in animals with PCOS, ACh, which passes through parasympathetic innervation, is an important component in the persistence and development of the pathophysiology.
Assuntos
Síndrome do Ovário Policístico , Progesterona , Animais , Atropina/farmacologia , Estradiol , Feminino , Ovulação/efeitos dos fármacos , RatosRESUMO
Two types of sequences, proline-rich domains (PRDs) and the WASP-homology 2 (WH2) domain, are found in most actin filament nucleation and elongation factors discovered thus far. PRDs serve as a platform for protein-protein interactions, often mediating the binding of profilin-actin. The WH2 domain is an abundant actin monomer-binding motif comprising â¼17 amino acids. It frequently occurs in tandem repeats, and functions in nucleation by recruiting actin subunits to form the polymerization nucleus. It is found in Spire, Cordon Bleu (Cobl), Leiomodin (Lmod), Arp2/3 complex activators (WASP, WHAMM, WAVE, etc.), the bacterial nucleators VopL/VopF and Sca2, and some formins. Yet, it is argued here that the WH2 domain plays only an auxiliary role in nucleation, always synergizing with other domains or proteins for this activity.