Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Chem ; 392(11): 1003-10, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21972974

RESUMO

Matrix metalloproteinases (MMPs) cleave and degrade most components of the extracellular matrix, and unregulated MMP activity has been correlated to cancer and metastasis. Hence there is a burgeoning need to develop inhibitors that bind selectively to structurally similar MMPs. The inhibition profiles of peptidomimetics containing C(α) substituents at the α,ß unsaturated carbon were evaluated against the recombinant forms of ADAM17, MMP1, and MMP9. The dicarboxylic acid D2 and hydroxamate C2 inhibited MMP9 but not MMP1. The unsaturated compound E2 displayed selective inhibition for MMP1, compared with the saturated precursor C2, with an IC(50) value of 3.91 µm. The molecular basis for this selectivity was further investigated by the molecular docking of E2 and D2 into the active sites of MMP1 and MMP9. These data demonstrate hydrogen-bonding interactions between the carbonyl group of the C(α) substituent of E2 and the side chain of Asn180 present in the active site of MMP1. Conversely, the docked MMP9-D2 structure shows hydrophobic and hydrogen bonding between the ligand's morpholine substituent and second carboxylic acid group with Leu187 and an amide, respectively. This study suggests that substituents other than P(1)' and P(2)' may confer selectivity among MMPs and may aid in the search for novel lead compounds.


Assuntos
Metaloproteinase 1 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAM17 , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Metaloproteinase 1 da Matriz/química , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
2.
Medchemcomm ; 10(12): 2118-2125, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206243

RESUMO

The biosynthesis of the essential metabolic cofactor coenzyme A (CoA) has been receiving increasing attention as a new target that shows potential to counter the rising resistance to established antimicrobials. In particular, phosphopantothenoylcysteine synthetase (PPCS)-the second CoA biosynthesis enzyme that is found as part of the bifunctional CoaBC protein in bacteria, but is monofunctional in eukaryotes-has been validated as a target through extensive genetic knockdown studies in Mycobacterium tuberculosis. Moreover, it has been identified as the molecular target of the fungal natural product CJ-15,801 that shows selective activity against Staphylococcus aureus and the malaria parasite Plasmodium falciparum. As such, CJ-15,801 and 4'-phospho-CJ-15,801 (its metabolically active form) are excellent tool compounds for use in the development of new antimicrobial PPCS inhibitors. Unfortunately, further study and analysis of CJ-15,801 is currently being hampered by several unique challenges posed by its synthesis. In this study we describe how these challenges were overcome by using a robust palladium-catalyzed coupling to form the key N-acyl vinylogous carbamate moiety with retention of stereochemistry, and by extensive investigation of protecting groups suited to the labile functional group combinations contained in this molecule. We also demonstrate that using TBAF for deprotection causes undesired off-target effects related to the presence of residual tertiary ammonium salts. Finally, we provide a new method for the chemoenzymatic preparation of 4'-phospho-CJ-15,801 on multi-milligram scale, after showing that chemical synthesis of the molecule is not practical. Taken together, the results of this study advances our pursuit to discover new antimicrobials that specifically target CoA biosynthesis and/or utilization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa