RESUMO
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), ß-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Assuntos
Complicações do Diabetes/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inflamação/imunologia , Obesidade/imunologia , Animais , Humanos , Imunomodulação , Resistência à InsulinaRESUMO
The deleterious effect of chronic activation of the IL-1ß system on type 2 diabetes and other metabolic diseases is well documented. However, a possible physiological role for IL-1ß in glucose metabolism has remained unexplored. Here we found that feeding induced a physiological increase in the number of peritoneal macrophages that secreted IL-1ß, in a glucose-dependent manner. Subsequently, IL-1ß contributed to the postprandial stimulation of insulin secretion. Accordingly, lack of endogenous IL-1ß signaling in mice during refeeding and obesity diminished the concentration of insulin in plasma. IL-1ß and insulin increased the uptake of glucose into macrophages, and insulin reinforced a pro-inflammatory pattern via the insulin receptor, glucose metabolism, production of reactive oxygen species, and secretion of IL-1ß mediated by the NLRP3 inflammasome. Postprandial inflammation might be limited by normalization of glycemia, since it was prevented by inhibition of the sodium-glucose cotransporter SGLT2. Our findings identify a physiological role for IL-1ß and insulin in the regulation of both metabolism and immunity.
Assuntos
Diabetes Mellitus Tipo 2/imunologia , Inflamação/imunologia , Células Secretoras de Insulina/fisiologia , Interleucina-1beta/metabolismo , Macrófagos/fisiologia , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Inflamassomos/metabolismo , Insulina/metabolismo , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Período Pós-Prandial , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transportador 2 de Glucose-Sódio/metabolismoRESUMO
Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.
Assuntos
Doenças Transmissíveis/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Inflamação/imunologia , Doença Aguda , Doença Crônica , HumanosRESUMO
The innate cytokine system is involved in the response to excessive food intake. In this review, we highlight recent advances in our understanding of the physiological role of three prominent cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), in mammalian metabolic regulation. This recent research highlights the pleiotropic and context-dependent functions in the immune-metabolic interplay. IL-1ß is activated in response to overloaded mitochondrial metabolism, stimulates insulin secretion, and allocates energy to immune cells. IL-6 is released by contracting skeletal muscle and adipose tissue and directs energy from storing tissues to consuming tissues. TNF induces insulin resistance and prevents ketogenesis. Additionally, the therapeutic potential of modulating the activity of each cytokine is discussed.
Assuntos
Citocinas , Resistência à Insulina , Animais , Humanos , Citocinas/metabolismo , Interleucina-6/metabolismo , Tecido Adiposo , Fator de Necrose Tumoral alfa/metabolismo , Resistência à Insulina/fisiologia , MamíferosRESUMO
Pancreatic-islet inflammation contributes to the failure of ß cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1ß, and palmitate). IL-33 promoted ß cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the ß cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute ß cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.
Assuntos
Insulina/metabolismo , Interleucina-33/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Células Mieloides/metabolismo , Tretinoína/metabolismo , Animais , Humanos , Inflamação/imunologia , Secreção de Insulina , Interleucina-33/biossíntese , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vitamina A/fisiologiaRESUMO
AIMS/HYPOTHESIS: Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS: This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS: Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION: These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.
Assuntos
Cistina , Ácido Glutâmico , Camundongos , Animais , Cistina/metabolismo , Ácido Glutâmico/metabolismo , Secreção de Insulina , Antiporters/metabolismo , Camundongos Knockout , Glutationa/metabolismoRESUMO
BACKGROUND: Women with gestational diabetes mellitus (GDM) have higher insulin resistance and/or reduced secretion, an increased risk of future diabetes and cardiovascular disease, which may be due to a pathological activation of the innate immune system. C-reactive protein (CRP) is induced by inflammatory cytokines and reflects innate immune activity. We investigated the prospective associations between CRP during the perinatal period with adverse metabolic outcomes at 1 year postpartum in women with previous GDM. METHODS: We analyzed data from the MySweetheart trial that included 211 women with GDM at 28-32 weeks gestational age (GA). CRP was measured during pregnancy at 28-32 weeks GA, at 6-8 weeks and at 1 year postpartum. Metabolic outcomes at 1 year postpartum included weight, total and central body fat, measures of insulin resistance and secretion and presence of the metabolic syndrome (MetS). A 75 g oral glucose tolerance test was performed to measure glucose and insulin values every 30 min over 2 h to calculate indices of insulin resistance (MATSUDA, HOMA-IR) and of absolute (AUCins/glu, HOMA-B) and insulin resistance-adjusted insulin secretion (ISSI-2). RESULTS: CRP during pregnancy and at 6-8 weeks postpartum predicted increased weight, body fat and visceral adipose tissue (VAT), insulin resistance (higher HOMA-IR, lower MATSUDA), absolute insulin secretion (HOMA-B, AUCins/glu), a reduced adjusted insulin secretion (ISSI-2) and a higher prevalence of the MetS at 1 year postpartum (all p ≤ 0.036). These relationships particularly those concerning CRP during pregnancy, were independent of weight ( for VAT, insulin resistance and secretion indices, MetS; all p ≤ 0.032) and of body fat ( for VAT, MATSUDA, MetS; all p ≤ 0.038). CONCLUSION: CRP during pregnancy and in the early postpartum predicted an adverse cardio-metabolic profile in women with prior GDM at 1 year postpartum independent of weight. The prospective association of CRP with increased insulin resistance and reduced adjusted insulin secretion hint to the role of inflammation in the development of impaired metabolism after GDM and could be used as an early marker for risk stratification.
Assuntos
Diabetes Gestacional , Resistência à Insulina , Síndrome Metabólica , Gravidez , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiologia , Proteína C-Reativa , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Período Pós-Parto/fisiologia , Insulina , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações , Avaliação de Resultados em Cuidados de SaúdeRESUMO
BACKGROUND: Patients with inflammatory diseases, such as rheumatoid arthritis, often receive glucocorticoids, but long-term use can produce adverse effects. Evidence from randomised controlled trials to guide tapering of oral glucocorticoids is scarce. We investigated a scheme for tapering oral glucocorticoids compared with continuing low-dose oral glucocorticoids in patients with rheumatoid arthritis. METHODS: The Steroid EliMination In Rheumatoid Arthritis (SEMIRA) trial was a double-blind, multicentre, two parallel-arm, randomised controlled trial done at 39 centres from six countries (France, Germany, Italy, Russia, Serbia, and Tunisia). Adult patients with rheumatoid arthritis receiving tocilizumab and glucocorticoids 5-15 mg per day for 24 weeks or more were eligible for inclusion if they had received prednisone 5 mg per day for 4 weeks or more and had stable low disease activaity, confirmed by a Disease Activity Score for 28 joints-erythrocyte sedimentation rate (DAS28-ESR) of 3·2 or less 4-6 weeks before and on the day of randomisation. Patients were randomly assigned 1:1 to either continue masked prednisone 5 mg per day for 24 weeks or to taper masked prednisone reaching 0 mg per day at week 16. All patients received tocilizumab (162 mg subcutaneously every week or 8 mg/kg intravenously every 4 weeks) with or without csDMARDs maintained at stable doses during the entire 24-week study. The primary outcome was the difference in mean DAS28-ESR change from baseline to week 24, with a difference of more than 0·6 defined as clinically relevant between the continued-prednisone group and the tapered-prednisone group. The trial is registered with ClinicalTrials.gov, NCT02573012. FINDINGS: Between Oct 21, 2015, and June 9, 2017, 421 patients were screened and 259 (200 [77%] women and 59 [23%] men) were recruited onto the trial. In all 128 patients assigned to the continued-prednisone regimen, disease activity control was superior to that in all 131 patients assigned to the tapered-prednisone regimen; the estimated mean change in DAS28-ESR from baseline to week 24 was 0·54 (95% CI 0·35-0·73) with tapered prednisone and -0·08 (-0·27 to 0·12) with continued prednisone (difference 0·61 [0·35-0·88]; p<0·0001), favouring continuing prednisone 5 mg per day for 24 weeks. Treatment was regarded as successful (defined as low disease activity at week 24, plus absence of rheumatoid arthritis flare for 24 weeks and no confirmed adrenal insufficiency) in 99 (77%) patients in the continued-prednisone group versus 85 (65%) patients in the tapered-prednisone group (relative risk 0·83; 95% CI 0·71-0·97). Serious adverse events occurred in seven (5%) patients in the tapered-prednisone group and four (3%) patients in the continued-prednisone group; no patients had symptomatic adrenal insufficiency. INTERPRETATION: In patients who achieved low disease activity with tocilizumab and at least 24 weeks of glucocorticoid treatment, continuing glucocorticoids at 5 mg per day for 24 weeks provided safe and better disease control than tapering glucocorticoids, although two-thirds of patients were able to safely taper their glucocorticoid dose. FUNDING: F Hoffmann-La Roche.
Assuntos
Artrite Reumatoide/tratamento farmacológico , Glucocorticoides/uso terapêutico , Prednisona/uso terapêutico , Indução de Remissão/métodos , Administração Intravenosa , Administração Oral , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Reumatoide/etnologia , Método Duplo-Cego , Esquema de Medicação , Quimioterapia Combinada , Feminino , França/epidemiologia , Alemanha/epidemiologia , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Humanos , Injeções Subcutâneas , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Federação Russa/epidemiologia , Sérvia/epidemiologia , Tunísia/epidemiologiaRESUMO
AIMS/HYPOTHESIS: IL-6 is a cytokine with various effects on metabolism. In mice, IL-6 improved beta cell function and glucose homeostasis via upregulation of glucagon-like peptide 1 (GLP-1), and IL-6 release from muscle during exercise potentiated this beneficial increase in GLP-1. This study aimed to identify whether exercise-induced IL-6 has a similar effect in humans. METHODS: In a multicentre, double-blind clinical trial, we randomly assigned patients with type 2 diabetes or obesity to intravenous tocilizumab (an IL-6 receptor antagonist) 8 mg/kg every 4 weeks, oral sitagliptin (a dipeptidyl peptidase-4 inhibitor) 100 mg daily or double placebos (a placebo saline infusion every 4 weeks and a placebo pill once daily) during a 12 week training intervention. The primary endpoints were the difference in change of active GLP-1 response to an acute exercise bout and change in the AUC for the concentration-time curve of active GLP-1 during mixed meal tolerance tests at baseline and after the training intervention. RESULTS: Nineteen patients were allocated to tocilizumab, 17 to sitagliptin and 16 to placebos. During the acute exercise bout active GLP-1 levels were 26% lower with tocilizumab (multiplicative effect: 0.74 [95% CI 0.56, 0.98], p = 0.034) and 53% higher with sitagliptin (1.53 [1.15, 2.03], p = 0.004) compared with placebo. After the 12 week training intervention, the active GLP-1 AUC with sitagliptin was about twofold that with placebo (2.03 [1.56, 2.62]; p < 0.001), while GLP-1 AUC values showed a small non-significant decrease of 13% at 4 weeks after the last tocilizumab infusion (0.87 [0.67, 1.12]; p = 0.261). CONCLUSIONS/INTERPRETATION: IL-6 is implicated in the regulation of GLP-1 in humans. IL-6 receptor blockade lowered active GLP-1 levels in response to a meal and an acute exercise bout in a reversible manner, without lasting effects beyond IL-6 receptor blockade. TRIAL REGISTRATION: Clinicaltrials.gov NCT01073826. FUNDING: Danish National Research Foundation. Danish Council for Independent Research. Novo Nordisk Foundation. Danish Centre for Strategic Research in Type 2 Diabetes. European Foundation for the Study of Diabetes. Swiss National Research Foundation.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Interleucina-6/metabolismo , Fosfato de Sitagliptina/uso terapêuticoAssuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLRRESUMO
BACKGROUND: Bariatric surgery may lead to symptomatic postprandial hypoglycaemia as a major side effect without established therapy so far. We aimed to develop an evidence-based study design of a clinical trial that tests treatment options and can provide useful patient-relevant evidence. METHODS: We searched systematically for guidance of core outcome sets to determine the most relevant types of outcomes and duration of such a trial. Our search comprised literature databases, a database of core outcome sets and self-help organizations. We then developed a simple online questionnaire based on interviews with German-speaking patients with postprandial hypoglycaemia after bariatric surgery. We recruited participants by reaching out to all German speaking endocrinologists in Switzerland and large Swiss bariatric centres. We asked for preferences regarding outcome types and acceptable duration of being included in a corresponding clinical trial. RESULTS: The literature search did not identify evidence-based guidance for informing our study design. Experience of clinical and research routine as well as patient interviews helped in identifying potential outcomes and the design of an online questionnaire. Therein, a total of 29 persons started the questionnaire and 22 answered questions related to the primary outcome. Of these, 17 (77.3%) deemed quality of life more relevant as primary outcome than the rate of hypoglycaemic episodes. A trial length of four weeks or longer was regarded as acceptable for 19 of 21 respondents to this question (91.4%) and of six months or longer for 12 respondents (56%). CONCLUSIONS: In situations with no other guidance, a simple questionnaire may help to inform trial design decisions. This study identifies a patient preference for "quality of life" as a primary outcome and supports the evidence-based conception of a patient-centred clinical trial in postbariatric hypoglycaemia.
Assuntos
Hipoglicemia , Qualidade de Vida , Humanos , Hipoglicemia/terapia , Insulina , Participação do Paciente , SuíçaRESUMO
The initial release of insulin in response to food stimuli acting on receptors in the head and oropharynx is called the cephalic phase of insulin secretion. Insulin has been shown to act centrally to regulate food intake and glucose metabolism and the cephalic phase of insulin secretion may contribute to these functions. Though well documented in laboratory animals, the existence of cephalic phase insulin release in humans has recently come into question. We therefore performed a systematic review and meta-analysis of studies of cephalic phase insulin release in humans. Efficacy outcomes included any change in circulating insulin levels in healthy human volunteers post any food stimulus as compared to baseline or control in a time period of no longer than 10 min. Primary outcome: The overall pooled effect size estimate for cephalic phase insulin release was 0.47 [0.36, 0.58] p-value <0.0001. Secondary outcomes: A random effects meta-analysis with an added moderator for type of stimulus presentation (one, two, four or five sensory qualities) and type of stimulus offered (liquid, solid formulation) also significantly influenced results p = 0.0116 and p = 0.0024 respectively, while sex had no significant effect. Sensitivity Analysis: More restrictive analyses only including studies that used non-ingestive stimuli (p = 0.0001), or studies that reported insulin values within 5 min post stimulus presentation (p < 0.0001) still showed significant positive overall effect size estimates. In summary, our analysis shows that there is evidence for the presence of cephalic phase insulin secretion in humans. Secondary analyses suggest that the type and presentation of stimulus may significantly influence cephalic phase insulin secretion, while sex had no significant effect on cephalic phase insulin secretion.
Assuntos
Glicemia , Insulina , Animais , Alimentos , Humanos , Insulina/metabolismo , Secreção de InsulinaRESUMO
AIMS/HYPOTHESIS: We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase ß (IKKß), which is activated by oxidative stress, is also implicated. METHODS: Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKß inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKß) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. RESULTS: 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet-1 h-1) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet-1 h-1] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic inhibition of IKKß also prevented fat-induced beta-cell dysfunction ex vivo ([in pmol insulin islet-1 h-1] control saline: 0.16 ± 0.02; control oleate: 0.10 ± 0.02; knockout oleate: 0.17 ± 0.04; p < 0.05 control saline vs. control oleate) and in vivo (DI: control saline: 3.86 ± 0.40; control oleate: 1.95 ± 0.29; knockout oleate: 2.96 ± 0.24; p < 0.01 control saline vs control oleate). CONCLUSIONS/INTERPRETATION: Our results demonstrate a causal role for IKKß in fat-induced beta cell dysfunction in vitro, ex vivo and in vivo.
Assuntos
Ácidos Graxos não Esterificados/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Salicílico/farmacologia , Animais , Feminino , Imidazóis/farmacologia , Células Secretoras de Insulina/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos WistarRESUMO
BACKGROUND & AIMS: Glucose-dependent insulinotropic peptide (GIP) induces production of interleukin 6 (IL6) by adipocytes. IL6 increases production of glucagon-like peptide (GLP)-1 by L cells and α cells, leading to secretion of insulin from ß cells. We investigated whether GIP regulates GLP1 and glycemia via IL6. METHODS: We obtained samples of human pancreatic islets and isolated islets from mice; human α cells and ß cells were sorted by flow cytometry and incubated with GIP. Islets were analyzed by quantitative polymerase chain reaction and immunohistochemistry. BKS.Cg-Dock7m+/+ Leprdb/J db/db mice (diabetic mice) and db/+ mice, as well as C57BL/6J IL6-knockout mice (IL6-KO) and C57BL/6J mice with the full-length Il6 gene (controls), were fed a chow or a high-fat diet; some mice were given injections of recombinant GIP, IL6, GLP, a neutralizing antibody against IL6 (anti-IL6), lipopolysaccharide, and/or IL1B. Mice were given a glucose challenge and blood samples were collected and analyzed. RESULTS: Incubation of mouse and human pancreatic α cells with GIP induced their production of IL6, leading to production of GLP1 and insulin secretion from pancreatic islets. This did not occur in islets from IL6-KO mice or in islets incubated with anti-IL6. Incubation of islets with IL1B resulted in IL6 production but directly reduced GLP1 production. Incubation of mouse islets with the sodium glucose transporter 2 inhibitor dapagliflozin induced production of GLP1 and IL6. Injection of control mice with GIP increased plasma levels of GLP1, insulin, and glucose tolerance; these effects were amplified in mice given lipopolysaccharide but reduced in IL6-KO mice or in mice given anti-IL6. Islets from diabetic mice had increased levels of IL1B and IL6, compared with db/+ mice, but injection of GIP did not lead to production of GLP1 or reduce glycemia. CONCLUSIONS: In studies of pancreatic islets from human beings and mice, we found that GIP induces production of IL6 by α cells, leading to islet production of GLP1 and insulin. This process is regulated by inflammation, via IL1B, and by sodium glucose transporter 2. In diabetic mice, increased islet levels of IL6 and IL1B might increase or reduce the production of GLP1 and affect glycemia.
Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Interleukin-1ß (IL-1ß) is a key cytokine involved in inflammatory illnesses including rare hereditary diseases and common chronic inflammatory conditions as gout, rheumatoid arthritis, and type 2 diabetes mellitus, suggesting reduction of IL-1ß activity as new treatment strategy. The objective of our study was to assess safety, antibody response, and preliminary efficacy of a novel vaccine against IL-1ß. The vaccine hIL1bQb consisting of full-length, recombinant IL-1ß coupled to virus-like particles was tested in a preclinical and clinical, randomized, placebo-controlled, double-blind study in patients with type 2 diabetes. The preclinical simian study showed prompt induction of IL-1ß-specific antibodies upon vaccination, while neutralizing antibodies appeared with delay. In the clinical study with 48 type 2 diabetic patients, neutralizing IL-1ß-specific antibody responses were detectable after six injections with doses of 900 µg. The development of neutralizing antibodies was associated with higher number of study drug injections, lower baseline body mass index, improvement of glycemia, and C-reactive protein (CRP). The vaccine hIL1bQb was safe and well-tolerated with no differences regarding adverse events between patients receiving hIL1bQb compared to placebo. This is the first description of a vaccine against IL-1ß and represents a new treatment option for IL-1ß-dependent diseases such as type 2 diabetes mellitus (ClinicalTrials.gov NCT00924105).
Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Diabetes Mellitus Tipo 2/terapia , Interleucina-1beta/imunologia , Vacinas/administração & dosagem , Adulto , Idoso , Animais , Diabetes Mellitus Tipo 2/imunologia , Método Duplo-Cego , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vacinas/imunologiaRESUMO
The association between the metabolic syndrome and a pathological activation of the innate immune system is now well established. Thus, defective insulin secretion and action are due, at least in part, to islet, liver and fat inflammation in type 2 diabetes. Furthermore, an inflammatory process also seems to be involved in the development of cardiovascular, renal and ophthalmological complications of this disease. Interestingly, several other inflammatory diseases are associated with the metabolic syndrome, such as psoriasis, gout and rheumatic arthritis. The aim of this review is to discuss the clinical progress of anti-inflammatory drugs in the treatment of type 2 diabetes and then speculate on the possible further development of these drugs, with the aim of using the drugs in combination in order to combat the multiple manifestations of inflammatory diseases. This review summarises a presentation given at the 'Islet inflammation in type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Simone Baltrusch, DOI: 10.1007/s00125-016-3891-x , and Jerry Nadler and colleagues, DOI: 10.1007/s00125-016-3890-y ) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.1007/s00125-016-3875-x ).
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/imunologiaRESUMO
Inflammation is a pathological feature of the pancreatic islet in type 1 and 2 diabetes, contributing to islet endocrine cell failure and the onset of hyperglycaemia in both diseases. Indeed, numerous immune targets have recently been found to be altered in type 2 diabetes, but few have yet to be translated to the clinic. Taylor-Fishwick and colleagues aimed to change this by performing proof-of-concept studies investigating the efficacy of small molecule inhibitors of 12-lipoxygenase in rodent and human beta cells exposed to proinflammatory cytokines. The results of these studies, published in this issue of Diabetologia (DOI: 10.1007/s00125-014-3452-0), build on a wealth of preclinical data that have implicated 12-lipoxygenase in rodent models of type 1 and 2 diabetes. While there remain some unanswered mechanistic questions regarding how cytokines regulate 12-lipoxygenase activation and the downstream consequences of activation, it is hoped that future studies with newly identified selective inhibitors may overcome the in vitro limitations of this study and allow for the eventual clinical translation of these highly interesting findings.
Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Humanos , MasculinoRESUMO
Despite tremendous research efforts, type 1 diabetes is one of the few remaining autoimmune diseases without any approved immunological treatment. This observation compels us to reconsider the role of autoimmunity in the pathogenesis of this disease. In this commentary, we will review solely human data in an attempt to appreciate, in an unbiased manner, the importance and relevance of the immunological alterations in patients with type 1 diabetes. The aim of this paper is to generate reflection on this topic, rather than a controversy.
Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismoRESUMO
BACKGROUND: Innate immunity contributes to the pathogenesis of autoimmune diseases, such as type 1 diabetes, but until now no randomised, controlled trials of blockade of the key innate immune mediator interleukin-1 have been done. We aimed to assess whether canakinumab, a human monoclonal anti-interleukin-1 antibody, or anakinra, a human interleukin-1 receptor antagonist, improved ß-cell function in recent-onset type 1 diabetes. METHODS: We did two randomised, placebo-controlled trials in two groups of patients with recent-onset type 1 diabetes and mixed-meal-tolerance-test-stimulated C peptide of at least 0·2 nM. Patients in the canakinumab trial were aged 6-45 years and those in the anakinra trial were aged 18-35 years. Patients in the canakinumab trial were enrolled at 12 sites in the USA and Canada and those in the anakinra trial were enrolled at 14 sites across Europe. Participants were randomly assigned by computer-generated blocked randomisation to subcutaneous injection of either 2 mg/kg (maximum 300 mg) canakinumab or placebo monthly for 12 months or 100 mg anakinra or placebo daily for 9 months. Participants and carers were masked to treatment assignment. The primary endpoint was baseline-adjusted 2-h area under curve C-peptide response to the mixed meal tolerance test at 12 months (canakinumab trial) and 9 months (anakinra trial). Analyses were by intention to treat. These studies are registered with ClinicalTrials.gov, numbers NCT00947427 and NCT00711503, and EudraCT number 2007-007146-34. FINDINGS: Patients were enrolled in the canakinumab trial between Nov 12, 2010, and April 11, 2011, and in the anakinra trial between Jan 26, 2009, and May 25, 2011. 69 patients were randomly assigned to canakinumab (n=47) or placebo (n=22) monthly for 12 months and 69 were randomly assigned to anakinra (n=35) or placebo (n=34) daily for 9 months. No interim analyses were done. 45 canakinumab-treated and 21 placebo-treated patients in the canakinumab trial and 25 anakinra-treated and 26 placebo-treated patients in the anakinra trial were included in the primary analyses. The difference in C peptide area under curve between the canakinumab and placebo groups at 12 months was 0·01 nmol/L (95% CI -0·11 to 0·14; p=0·86), and between the anakinra and the placebo groups at 9 months was 0·02 nmol/L (-0·09 to 0·15; p=0·71). The number and severity of adverse events did not differ between groups in the canakinumab trial. In the anakinra trial, patients in the anakinra group had significantly higher grades of adverse events than the placebo group (p=0·018), which was mainly because of a higher number of injection site reactions in the anakinra group. INTERPRETATION: Canakinumab and anakinra were safe but were not effective as single immunomodulatory drugs in recent-onset type 1 diabetes. Interleukin-1 blockade might be more effective in combination with treatments that target adaptive immunity in organ-specific autoimmune disorders. FUNDING: National Institutes of Health and Juvenile Diabetes Research Foundation.