Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068900

RESUMO

S100B, a homodimeric Ca2+-binding protein, is produced and secreted by astrocytes, and its extracellular levels have been used as a glial marker in brain damage and neurodegenerative and psychiatric diseases; however, its mechanism of secretion is elusive. We used primary astrocyte cultures and calcium measurements from real-time fluorescence microscopy to investigate the role of intracellular calcium in S100B secretion. In addition, the dimethyl sulfoxide (DMSO) effect on S100B was investigated in vitro and in vivo using Wistar rats. We found that DMSO, a widely used vehicle in biological assays, is a powerful S100B secretagogue, which caused a biphasic response of Ca2+ mobilization. Our data show that astroglial S100B secretion is triggered by the increase in intracellular Ca2+ and indicate that this increase is due to Ca2+ mobilization from the endoplasmic reticulum. Also, blocking plasma membrane Ca2+ channels involved in the Ca2+ replenishment of internal stores decreased S100B secretion. The DMSO-induced S100B secretion was confirmed in vivo and in ex vivo hippocampal slices. Our data support a nonclassic vesicular export of S100B modulated by Ca2+, and the results might contribute to understanding the mechanism underlying the astroglial release of S100B.


Assuntos
Astrócitos , Dimetil Sulfóxido , Ratos , Animais , Ratos Wistar , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Astrócitos/metabolismo , Colforsina/farmacologia , Secretagogos/farmacologia , Cálcio/metabolismo , Fatores de Crescimento Neural/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Retículo Endoplasmático/metabolismo , Células Cultivadas
2.
Cell Mol Life Sci ; 77(1): 129-147, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31363816

RESUMO

Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Proteínas S100/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Citocinas/análise , Citocinas/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Obesidade/complicações , Obesidade/fisiopatologia , Proteínas S100/análise
3.
Cell Mol Life Sci ; 77(18): 3547-3565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32072237

RESUMO

Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine ß-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.


Assuntos
Células Musculares/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Autofagia , Glutationa/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo
4.
Hum Mol Genet ; 27(21): 3734-3746, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085099

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal X-linked disease affecting striated muscles, which undergo progressive degeneration and chronic inflammation. Receptor for advanced glycation end-products (RAGE), a multiligand receptor involved in myogenesis and inflammation, is absent in healthy adult muscles but is re-expressed in myoblasts, regenerating myofibers and activated immune cells upon acute muscle injury, and in certain myopathies. We show here that RAGE is expressed and chronically stimulated in muscles of mdx mice, an experimental model of DMD, which also release high amounts of the RAGE ligands, HMGB1 and S100B. We generated a double mutant, mdx/Ager-/- mouse lacking dystrophin and RAGE. Compared to mdx mice, muscles of mdx/Ager-/- mice show restrained inflammation, unaffected fibrosis and higher muscle strength. Mdx/Ager-/- macrophages are less responsive to proinflammatory stimuli and express lower levels of Ccr2, Ccl2 and Ccl7, which are involved in monocyte/macrophage chemotaxis and migration. In vivo treatment of dystrophic muscles with a RAGE blocking antibody results in reduced necrosis and inflammatory infiltrate. Our results suggest that RAGE sustains muscle inflammation and necrosis in DMD muscles and that reducing RAGE activity might represent a potential therapeutic tool to counteract muscle inflammation and rescue muscle morphology in DMD conditions.


Assuntos
Inflamação , Força Muscular , Distrofia Muscular de Duchenne/metabolismo , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Animais , Modelos Animais de Doenças , Distrofina/genética , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/fisiopatologia , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 721-733, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499228

RESUMO

Nrf2 and its endogenous inhibitor, Keap1, function as a ubiquitous, evolutionarily conserved intracellular defense mechanism to counteract oxidative stress. Sequestered by cytoplasmic Keap1 and targeted to proteasomal degradation in basal conditions, in case of oxidative stress Nrf2 detaches from Keap1 and translocates to the nucleus, where it heterodimerizes with one of the small Maf proteins. The heterodimers recognize the AREs, that are enhancer sequences present in the regulatory regions of Nrf2 target genes, essential for the recruitment of key factors for transcription. In the present review we briefly introduce the Nrf2-Keap1 system and describe Nrf2 functions, illustrate the Nrf2-NF-κB cross-talk, and highlight the effects of the Nrf2-Keap1 system in the physiology and pathophysiology of striated muscle tissue taking into account its role(s) in oxidative stress and reductive stress.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Núcleo Celular/genética , Humanos , Fatores de Transcrição Maf/genética , NF-kappa B/genética , Oxirredução , Transdução de Sinais
6.
Cell Mol Life Sci ; 74(15): 2749-2760, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28417162

RESUMO

S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin ß1 transduce some extracellular S100A6's effects. Dosage of serum S100A6 might aid in diagnosis in oncology.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias/metabolismo , Proteínas S100/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/sangue , Proteínas de Ciclo Celular/genética , Movimento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Neoplasias/sangue , Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/sangue , Proteínas S100/genética , Transdução de Sinais , Células-Tronco/metabolismo
7.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361745

RESUMO

Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Microglia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CX3CL1/metabolismo , Regulação da Expressão Gênica , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Receptores Imunológicos/metabolismo , Transdução de Sinais
8.
J Cell Sci ; 127(Pt 8): 1699-711, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24554430

RESUMO

Embryonal rhabdomyosarcomas (ERMSs) show elevated levels of PAX7, a transcription factor that marks quiescent adult muscle stem (satellite) cells and is important for proliferation and survival of activated satellite cells and whose timely repression is required for myogenic differentiation. However, the mechanism of PAX7 accumulation in ERMSs and whether high PAX7 causes uncontrolled proliferation in ERMS remains to be elucidated. The receptor for advanced glycation end-products (RAGE, encoded by AGER) transduces a myogenic and anti-proliferative signal in myoblasts, and stable transfection of the ERMS cell line TE671, which does not express RAGE, with AGER results in reduced proliferation and formation of tumor masses in vivo, and enhanced apoptosis and myogenic differentiation. Herein, we show that RAGE expression is low or absent in human ERMSs. We also show that in ERMS cells (1) PAX7 accumulates owing to absent or low RAGE signaling; (2) elevated PAX7 levels reduce RAGE expression and levels of MyoD and myogenin, muscle-specific transcription factors required for myoblast proliferation arrest and differentiation, respectively; (3) PAX7 supports myoblast proliferation by reducing the levels of MyoD, primarily by promoting its degradation; and (4), when ectopically expressed in ERMS cells, that RAGE upregulates myogenin which upregulates MyoD and downregulates PAX7, with consequent inhibition of proliferation and stimulation of differentiation. Thus, failure to express RAGE and, hence, MyoD and myogenin above a critical level in ERMS cells might result in deregulated PAX7 expression leading to uncontrolled proliferation and, potentially, to rhabdomyosarcomagenesis.


Assuntos
Proliferação de Células , Fator de Transcrição PAX7/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Miogenina/metabolismo , Rabdomiossarcoma Embrionário/patologia , Transdução de Sinais , Regulação para Cima
9.
Carcinogenesis ; 36(9): 1071-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26153023

RESUMO

Rhabdomyosarcoma represents about 50% of soft-tissue sarcomas and 10% of malignant solid tumors in childhood. Embryonal rhabdomyosarcoma (ERMS) is the most frequent subtype, suggested to have an origin in muscle precursor cells that fail to exit the cell cycle and terminally differentiate mainly because of overexpression of the transcription factor, PAX7, which sustains proliferation, migration and invasiveness in ERMS cells. Artesunate (ARS) is a semi-synthetic derivative of artemisinin (ART), a natural compound well known as an antimalarial drug. However, ART and its derivatives have been found efficacious even as anticancer drugs that induce cell cycle arrest and/or apoptosis in several kinds of cancer. Here, we show that ARS dose-dependently induces DNA damage and apoptosis in ERMS cell lines. Production of reactive oxygen species (ROS) and activation of p38 MAPK have a central role in triggering ARS-mediated apoptosis in ERMS cells; indeed either the antioxidant, N-acetylcysteine or the p38 MAPK inhibitor, SB203580, protects ERMS cells from ARS-induced apoptosis. Moreover, ARS treatment in ERMS cells ROS-dependently induces the expression of the myo-miRs, miR-133a and miR-206, which are down-regulated in RMS, and reduces PAX7 protein levels. Finally, ARS upregulates the expression of the adhesion molecules, NCAM and integrin ß1, and reduces migration and invasiveness of ERMS cells in vitro, and ARS treatment reduces of about 50% the growth of ERMS xenografts in vivo. Our results are the first evidence of efficacy of ART derivatives in restraining ERMS growth in vivo, and suggest ARS as a potential candidate for therapeutic treatment of ERMS.


Assuntos
Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rabdomiossarcoma Embrionário/tratamento farmacológico , Rabdomiossarcoma Embrionário/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilcisteína/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Artemisininas/uso terapêutico , Artesunato , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dano ao DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Integrina beta1/biossíntese , Camundongos , MicroRNAs/biossíntese , Invasividade Neoplásica , Transplante de Neoplasias , Moléculas de Adesão de Célula Nervosa/biossíntese , Fator de Transcrição PAX7/biossíntese , Piridinas/farmacologia , Transplante Heterólogo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
Carcinogenesis ; 35(10): 2382-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123133

RESUMO

Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE(-ve) TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.


Assuntos
Fator de Transcrição PAX7/metabolismo , Receptores Imunológicos/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Animais , Antígeno CD56/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/genética , Efrina-A1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leupeptinas/farmacologia , Camundongos , Camundongos Mutantes , Camundongos Nus , Mioblastos/patologia , Miogenina/metabolismo , Fator de Transcrição PAX7/genética , Receptores Proteína Tirosina Quinases/genética , Receptor para Produtos Finais de Glicação Avançada , Receptor EphA3 , Receptores Imunológicos/genética , Rabdomiossarcoma Embrionário/tratamento farmacológico , Rabdomiossarcoma Embrionário/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochim Biophys Acta ; 1833(1): 101-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103427

RESUMO

RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily involved in inflammation, diabetes, atherosclerosis, nephropathy, neurodegeneration, and cancer. Advanced glycation end-products, high mobility group box-1 (amphoterin), ß-amyloid fibrils, certain S100 proteins, and DNA and RNA are RAGE ligands. Upon RAGE ligation, adaptor proteins (i.e., diaphanous-1, TIRAP, MyD88 and/or other as yet unidentified adaptors) associate with RAGE cytoplasmic domain resulting in signaling. However, RAGE activation may not be restricted to pathological statuses, the receptor being involved in tissue homeostasis and regeneration/repair upon acute injury, and in resolution of inflammation. RAGE effects are strongly dependent on the cell type and the context, which may condition therapeutic strategies aimed at reducing RAGE signaling.


Assuntos
Homeostase/genética , Receptores Imunológicos/fisiologia , Regeneração/genética , Cicatrização/genética , Animais , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Produtos Finais de Glicação Avançada/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Modelos Biológicos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
12.
J Cell Sci ; 125(Pt 6): 1440-54, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328527

RESUMO

Expression of the paired-box 7 (PAX7) transcription factor is regulated during both myoblast proliferation and differentiation: high levels of PAX7 compromise myogenic differentiation because of excess and prolonged proliferation, whereas low levels of PAX7 result in precocious differentiation. We showed that myogenin repressed Pax7 transcription in differentiating myoblasts by binding to specific recognition sites in the Pax7 promoter, and that high-mobility group box 1 (HMGB1)-receptor for advanced glycation end-products (RAGE) signaling was required for myogenin induction and myogenin-dependent repression of Pax7 transcription. In addition, PAX7 negatively and myogenin positively regulated RAGE expression. RAGE, a multiligand receptor of the immunoglobulin superfamily, was not expressed in adult skeletal muscles, and was transiently expressed in activated, proliferating and differentiating satellite cells (SCs) in injured muscles. Compared with wild-type muscles, Rage(-/-) muscles exhibited increased numbers of basal SCs that were further increased in injured Rage(-/-) muscles following elevated myoblast asymmetric division; complete regeneration of injured Rage(-/-) muscles was found to be delayed by ~1 week. Thus, RAGE signaling physiologically repressed Pax7 transcription in SCs by upregulating myogenin, thereby accelerating muscle regeneration and limiting SC self-renewal.


Assuntos
Proteína HMGB1/fisiologia , Homeostase/fisiologia , Miogenina/fisiologia , Fator de Transcrição PAX7/genética , Receptores Imunológicos/genética , Células Satélites de Músculo Esquelético/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/citologia , Mioblastos/metabolismo , Fator de Transcrição PAX7/biossíntese , Cultura Primária de Células , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Elementos Reguladores de Transcrição/fisiologia , Proteínas Repressoras/fisiologia , Células Satélites de Músculo Esquelético/citologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
13.
Am J Respir Crit Care Med ; 188(11): 1338-50, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24127697

RESUMO

RATIONALE: Hypoxia regulates the inflammatory-antiinflammatory balance by the receptor for advanced glycation end products (RAGE), a versatile sensor of damage-associated molecular patterns. The multiligand nature of RAGE places this receptor in the midst of chronic inflammatory diseases. OBJECTIVES: To characterize the impact of the hypoxia-RAGE pathway on pathogenic airway inflammation preventing effective pathogen clearance in cystic fibrosis (CF) and elucidate the potential role of this danger signal in pathogenesis and therapy of lung inflammation. METHODS: We used in vivo and in vitro models to study the impact of hypoxia on RAGE expression and activity in human and murine CF, the nature of the RAGE ligand, and the impact of RAGE on lung inflammation and antimicrobial resistance in fungal and bacterial pneumonia. MEASUREMENTS AND MAIN RESULTS: Sustained expression of RAGE and its ligand S100B was observed in murine lung and human epithelial cells and exerted a proximal role in promoting inflammation in murine and human CF, as revealed by functional studies and analysis of the genetic variability of AGER in patients with CF. Both hypoxia and infections contributed to the sustained activation of the S100B-RAGE pathway, being RAGE up-regulated by hypoxia and S100B by infection by Toll-like receptors. Inhibiting the RAGE pathway in vivo with soluble (s) RAGE reduced pathogen load and inflammation in experimental CF, whereas sRAGE production was defective in patients with CF. CONCLUSIONS: A causal link between hyperactivation of RAGE and inflammation in CF has been observed, such that targeting pathogenic inflammation alleviated inflammation in CF and measurement of sRAGE levels could be a useful biomarker for RAGE-dependent inflammation in patients with CF.


Assuntos
Fibrose Cística/patologia , Hipóxia/patologia , Mediadores da Inflamação/fisiologia , Pneumonia/etiologia , Receptores Imunológicos/imunologia , Animais , Aspergilose/microbiologia , Biomarcadores , Western Blotting , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Resistência Microbiana a Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Hipóxia/complicações , Hipóxia/etiologia , Itália , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Receptor para Produtos Finais de Glicação Avançada , Mucosa Respiratória , Técnicas de Cultura de Tecidos , Regulação para Cima
14.
J Cell Sci ; 124(Pt 14): 2389-400, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21693575

RESUMO

S100B protein has been shown to exert anti-myogenic and mitogenic effects in myoblast cultures through inhibition of the myogenic p38 MAPK and activation of the mitogenic ERK1/2. However, the receptor mediating these effects had not been identified. Here, we show that S100B increases and/or stabilizes the binding of basic fibroblast growth factor (bFGF) to bFGF receptor 1 (FGFR1) by interacting with bFGF, thereby enhancing FGFR1 activation and the mitogenic and anti-myogenic effects of FGFR1. S100B also binds to its canonical receptor RAGE (receptor for advanced glycation end-products), a multi-ligand receptor previously shown to transduce a pro-myogenic signal when activated by HMGB1, and recruits RAGE into a RAGE-S100B-bFGF-FGFR1 complex. However, when bound to S100B-bFGF-FGFR1, RAGE can no longer stimulate myogenic differentiation, whereas in the absence of either bFGF or FGFR1, binding of S100B to RAGE results in stimulation of RAGE anti-mitogenic and promyogenic signaling. An S100B-bFGF-FGFR1 complex also forms in Rage(-/-) myoblasts, leading to enhanced proliferation and reduced differentiation, which points to a dispensability of RAGE for the inhibitory effects of S100B on myoblasts under the present experimental conditions. These results reveal a new S100B-interacting protein - bFGF - in the extracellular milieu and suggest that S100B stimulates myoblast proliferation and inhibits myogenic differentiation by activating FGFR1 in a bFGF-dependent manner.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas S100/metabolismo , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Transdução de Sinais , Regulação para Cima
15.
PLoS Pathog ; 7(3): e1001315, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423669

RESUMO

Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen-induced inflammation and a pathogen-sensing mechanism resolves danger-induced inflammation.


Assuntos
Aspergillus/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Proteínas S100/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Aspergillus/patogenicidade , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Aspergilose Pulmonar/metabolismo , Aspergilose Pulmonar/microbiologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Receptor 2 Toll-Like/metabolismo
16.
J Biol Chem ; 286(9): 7214-26, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21209080

RESUMO

The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.


Assuntos
Movimento Celular/imunologia , Quimiocinas/metabolismo , Microglia , Fatores de Crescimento Neural/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Bovinos , Linhagem Celular , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL3/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Quimiocinas/genética , Quimiocinas/imunologia , Citoesqueleto/metabolismo , Encefalite/imunologia , Encefalite/metabolismo , Forminas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Ratos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/imunologia , Regulação para Cima/imunologia
17.
Biochim Biophys Acta ; 1813(5): 1092-104, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21130124

RESUMO

S100B protein activates IKKß/NF-κB within myoblasts, thereby inhibiting the expression of MyoD and the MyoD-downstream effectors, myogenin and p21(WAF1), and myoblast differentiation. Herein we show that myoblasts downregulate S100B expression once transferred from proliferation medium to differentiation medium via a p38 MAPK-driven transcriptional mechanism as well as a post-translational, proteasome-dependent mechanism, and that myoblasts that have not been committed to differentiation resume expressing S100B once transferred back to proliferation medium. Likewise, myoblasts downregulate S100B expression once transferred to quiescence medium, and interference with S100B downregulation as obtained by stable overexpression of the protein results in reduced acquisition of quiescence and a faster proliferation upon transfer of the cells from quiescence medium to proliferation medium, compared to controls. These latter effects are dependent on S100B-induced activation of JNK. Moreover, S100B reduces myoblast apoptosis in an MEK-ERK1/2, Akt, JNK, and NF-κB-dependent manner. However, myogenin(+) myoblasts (i.e., myocytes) and myotubes abundantly express S100B likely induced by myogenin. Our results suggest that (1) a timely repression of S100B expression is required for efficient myogenic differentiation; (2) S100B plays an important role in the expansion of the activated (i.e., proliferating) myoblast population; (3) under conditions associated with enhanced expression of S100B, the transition from proliferation to quiescence and from quiescence to proliferation might be altered; and (4) S100B exerts different regulatory effects in myoblasts and myocytes/myotubes/myofibers. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Apoptose , Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Miogenina/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100
18.
J Biol Chem ; 285(14): 10385-96, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20124407

RESUMO

Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Imunoenzimáticas , Imunoprecipitação , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção
19.
Biomolecules ; 11(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204735

RESUMO

The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .


Assuntos
COVID-19/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sistema Renina-Angiotensina , Animais , COVID-19/genética , COVID-19/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Polimorfismo Genético , Receptor para Produtos Finais de Glicação Avançada/genética , Fatores de Risco , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença
20.
Life Sci ; 272: 119251, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636175

RESUMO

A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.


Assuntos
COVID-19/complicações , Descoberta de Drogas , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , SARS-CoV-2/fisiologia , Animais , COVID-19/metabolismo , COVID-19/patologia , Humanos , Terapia de Alvo Molecular , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa