Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838784

RESUMO

With the widespread applications of manufactured nanoparticles (NPs), there are increasing concerns about their potential adverse effects on the environment and living systems. Many studies demonstrated that NPs could significantly affect the growth and development of crop plants. However, knowledge regarding the impacts of NPs on crop quality is rather limited. In this study, the effects of CeO2 NPs (25, 75, and 225 mg Ce/kg) and CeCl3 (25 mg Ce/kg) on the nutritional components of soil-cultivated corn and soybean plants were evaluated. Both treatments tended to decrease the dry weight of grain per plant, while only 225 mg/kg CeO2 NPs on soybean and CeCl3 on corn showed statistical significance compared with the respective control. CeO2 NPs at 225 mg/kg significantly decreased the content of starch in the corn kernels by 18.2% but increased total phenols in soybean seeds by 18.4%. Neither CeO2 NPs nor CeCl3 significantly affected the contents of minerals in corn kernels except for Zn. However, in the case of soybean, the two treatments tended to decrease the contents of P, Zn, Mn, and Mo but increase the content of S. Overall, the results suggest that CeO2 NPs and Ce3+ ions showed similar but not identical effects on corn and soybean plants. CeO2 NPs affect the nutritional quality of crop plants in a species-dependent manner.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Glycine max , Zea mays , Cério/farmacologia , Valor Nutritivo
2.
Protein Expr Purif ; 182: 105846, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592252

RESUMO

Trehalase catalyzes the hydrolysis of trehalose into two glucose molecules and is present in nearly all tissues in various forms. In this study, a putative bacterial trehalase gene, encoding a glycoside hydrolase family 15 (GH15) protein was identified in Microvirga sp. strain MC18 and heterologously expressed in E. coli. The specific activity of the purified recombinant trehalase MtreH was 24 U/mg, with Km and Vmax values of 23.45 mg/mL and 184.23 µmol/mg/min, respectively. The enzyme exhibited optimal activity at 40 °C and pH 7.0, whereby Ca2+ had a considerable positive effects on the catalytic activity and thermostability. The optimized enzymatic reaction conditions for the bioconversion of trehalose using rMtreH were determined as 40 °C, pH 7.0, 10 h and 1% trehalose concentration. The characterization of this bacterial trehalase improves our understanding of the metabolism and biological role of trehalose in prokaryotic organism.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Methylobacteriaceae , Trealase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Methylobacteriaceae/enzimologia , Methylobacteriaceae/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Trealase/biossíntese , Trealase/química , Trealase/genética , Trealase/isolamento & purificação
3.
Protein Expr Purif ; 185: 105898, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33962003

RESUMO

Nutraceuticals containing modified starch with increased content of slowly-digestible starch (SDS) may reduce the prevalence of obesity, diabetes and cardiovascular diseases due to its slow digestion rate. Enzymatic methods for the preparation of modified starch have attracted increasing attention because of their low environmental impact, safety and specificity. In this study, the efficient glucan branching enzyme McGBE from Microvirga sp. MC18 was identified, and its relevant properties as well as its potential for industrial starch modification were evaluated. The purified McGBE exhibited the highest specificity for potato starch, with a maximal specific activity of 791.21 U/mg. A time-dependent increase in the content of α-1,6 linkages from 3.0 to 6.0% was observed in McGBE-modified potato starch. The proportion of shorter chains (degree of polymerization, DP < 13) increased from 29.2 to 63.29% after McGBE treatment, accompanied by a reduction of the medium length chains (DP 13-24) from 52.30 to 35.99% and longer chains (DP > 25) from 18.51 to 0.72%. The reduction of the storage modulus (G') and retrogradation enthalpy (ΔHr) of potato starch with increasing treatment time demonstrated that McGBE could inhibit the short- and long-term retrogradation of starch. Under the optimal conditions, the SDS content of McGBE-modified potato starch increased by 65.8% compared to native potato starch. These results suggest that McGBE has great application potential for the preparation of modified starch with higher SDS content that is resistant to retrogradation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Proteínas de Bactérias/química , Suplementos Nutricionais/análise , Methylobacteriaceae/enzimologia , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hidrólise , Cinética , Methylobacteriaceae/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Environ Sci Technol ; 55(21): 14649-14657, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652129

RESUMO

The time-course association of soil physicochemical properties and fate of CeO2 nanoparticles (NPs) is not well understood. This study for the first time investigated the dissolution and retention of CeO2 NPs (<25 nm) during soil short-term (6 h) and long-term (30 d) aging processes with dynamic redox conditions. Under the additional reductant-induced initial reductive condition, theoretically, up to 220‰ of Ce(IV) was temporarily reductively dissolved within 10 min, accompanied by a slow retention process (180 min) of Ce species in soil solutions. Conversely, the dissolution and slow retention of Ce species were not significant in soil solutions without added reductant. X-ray absorption near edge spectroscopy (XANES) shows that most of Ce species were present as Ce(IV) (94.0%-97.8%) in all soils after a long-term aging process. These results indicate that the soil dynamic redox conditions induced by oxidant/reductant intrinsically determined the different time-course dissolution and retention of CeO2 NPs, highlighting the occasional reductive condition in soil solution that may contribute to the migration and diffusion of Ce species. The time-course study should be also adopted to develop a comprehensive understanding of the nano-soil interactions.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Oxirredução , Solo , Solubilidade
5.
Appl Microbiol Biotechnol ; 105(21-22): 8287-8296, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34605970

RESUMO

The novel ß-agarase gene aga575 from the agarolytic bacterium Aquimarina agarilytica ZC1 is composed of 2142 bp, and the encoded protein Aga575 has the highest amino acid sequence homology of only 65.2% with known agarases. Though carrying a domain of glycoside hydrolase family 42 in the C-terminal, Aga575 should belong to glycoside hydrolase family 50 according to the phylogenetic analysis. Gene aga575 was successfully cloned and overexpressed in Escherichia coli Rosetta (DE3) cells. The recombinant protein had the maximal agarase activity at pH 8.0 and 37 °C. The values Km and Vmax toward agarose were 8.4 mg/mL and 52.2 U/mg, respectively. Aga575 hydrolyzed agarose and neoagarooligosaccharides to yield neoagarobiose as the sole product. The agarose hydrolysis pattern of Aga575 indicated that it was an exo-type ß-agarase. Random mutagenesis was carried out to obtain two beneficial mutants M1 (R534G) and M2 (S4R-R424G) with higher activities. The results showed that the agarase activity of mutant M1 and M2 reached 162% and 192% of the wild-type agarase Aga575, respectively. Moreover, the activity of the mixed mutant M1/M2 (S4R-R424G-R534G) increased to 227%. KEY POINTS: • Aga575 is a novel exo-type ß-agarase degrading agarose to yield neoagarobiose as the sole product. • Though owning a domain of glycoside hydrolase family GH42, Aga575 should belong to family GH50. • The agarase activity of one mutant increased to 227% of the wild-type Aga575.


Assuntos
Flavobacteriaceae , Glicosídeo Hidrolases , Clonagem Molecular , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Filogenia
6.
Appl Microbiol Biotechnol ; 105(18): 6793-6803, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477943

RESUMO

Some microbial-associated molecular patterns (MAMPs), like glucan oligosaccharides, can be recognized by pattern recognition receptors (PRRs) of plant to elicit further immunity response. In this study, a novel glycoside hydrolase family 55 ß-1,3-glucanase (AcGluA) from Archangium sp. strain AC19 was cloned and expressed in Escherichia coli. Among the reported ß-1, 3-glucanases from the glycoside hydrolase 55 family, the purified AcGluA exhibited the highest activity on laminarin at pH 6.0 and 60 °C with 112.3 U/mg. Activity of AcGluA was stable in the range of pH 4.0-9.0 and at temperatures below 60 °C. The Km and Vmax of AcGluA for laminarin were 3.5 mg/ml and 263.5 µmol/(ml·min). AcGluA hydrolyzed laminarin into a series of oligosaccharides, suggesting it was an endo-ß-1,3-glucanase. The high dose of oligosaccharides (1600 mg/l) had conspicuous biocontrol efficacy on the defense of rice seedlings to Magnaporthe oryzae, which provided a new idea for the development of green biopesticide.Key points• The AcGluA was determined bacteria-derived ß-1,3-glucanases in the GH55 family.• The AcGluA showed the highest activity towards laminarin among reported GH55 family.• The hydrolysates of laminarin showed conspicuous biocontrol efficacy to M. oryzae.


Assuntos
Ascomicetos , Glicosídeo Hidrolases , Ascomicetos/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Especificidade por Substrato
7.
ISME J ; 17(7): 1089-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156836

RESUMO

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized ß-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target ß-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain ß-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.


Assuntos
Myxococcales , Myxococcus xanthus , Phytophthora , Animais , Myxococcales/genética , Comportamento Predatório , Myxococcus xanthus/genética , Glucanos , Phytophthora/genética
8.
Metallomics ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100933

RESUMO

The influence of morphology on the biological effects of nanomaterials (NMs) has not been well understood. In the present study, we compared the phytotoxicity of rod-shaped nano-cerium dioxide (R-CeO2) and nano-cerium phosphate (R-CePO4) to lettuce plants. The results showed that R-CeO2 significantly inhibited the root elongation of lettuce, induced oxidative damages, and caused cell death, while R-CePO4 was nontoxic to lettuce. The different distribution and speciation of Ce in plant tissues were determined by transmission electron microscopy (TEM) and X-ray absorption near edge spectroscopy (XANES) combined with linear combination fitting (LCF). The results showed that in the R-CeO2 group, part of Ce was transformed from Ce(IV) to Ce(III), while only Ce(III) was present in the R-CePO4 group. When interacting with plants, R-CeO2 is easier to be dissolved and transformed than R-CePO4, which might be the reason for their different phytotoxicity. Although both are Ce-based NMs and have the same morphology, the toxicity of R-CeO2 seems to come from the released Ce3+ ions rather than its shape. This research emphasizes the importance of chemical composition and reactivity of NMs to their toxicological effects.


Assuntos
Cério/toxicidade , Lactuca/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Fosfatos/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Lactuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
9.
NanoImpact ; 22: 100311, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559968

RESUMO

The release of toxic ions from metal-based nanoparticles (NPs) may play an important role in biological effects of NPs. In this life cycle study, physiological and biochemical responses of soil-grown corn (Zea mays) plants exposed to ceria NPs and its ionic counterparts Ce3+ ions at 0, 25, 75 and 225 mg Ce/kg were investigated. Both treatments tended to reduce the fresh weight and height of the plants at 28 days after sowing (DAS), and delay silk appearance and finally decrease fruit weight at harvest. Uptake and distribution of some mineral nutrients, Ca, P, Fe, B, Zn and Mn in the plants were disturbed. None of the treatments significantly affected activities of antioxidant enzymes and MDA contents in the roots and leaves at 28 DAS. At 90 DAS, ceria NPs and Ce3+ ions disturbed the homeostasis of antioxidative systems in the plants, Ce3+ ions at all concentrations provoked significant oxidative damage in the roots and significantly increased MDA levels as compare to the control. The results indicate that the effects of ceria NPs and Ce3+ ions on corn plants varied with different growth stages and ceria NPs had similar but less severe impacts than Ce3+ ions. Speciation analysis revealed there was mutual transformation between CeO2 and Ce3+ in the soil-plant system. It is speculated that Ce3+ ions play a key role in toxicity. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of CeO2 NPs and Ce3+ ions on corn plants.


Assuntos
Cério , Nanopartículas Metálicas , Antioxidantes/farmacologia , Cério/farmacologia , Íons/farmacologia , Nanopartículas Metálicas/toxicidade , Solo/química , Zea mays
10.
BMJ Case Rep ; 20152015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25903200

RESUMO

A 45-year-old woman, a smoker, presented acutely with subacute small bowel obstruction. Abdominal CT scan showed features of ileocaecal Crohn's disease. She was treated with high dose steroids and her symptoms rapidly settled. A few days later she was discharged on a reducing steroid course in addition to azathioprine. Outpatient colonoscopy was performed and reported as normal but there was failed terminal ileal intubation. Three months later, she represented as an emergency with complete small bowel obstruction. On laparoscopy, a terminal ileal stricture was found resulting in an ileocolic resection. Histopathology reported an endometriotic stricture with no evidence of Crohn's disease. She was advised to stop steroids and azathioprine. A subsequent pelvic MRI scan showed no further endometrial deposits and she remained symptom free. This case highlights that endometriosis should always be considered when women of childbearing age present with bowel obstruction, even if the patient has no other evidence of the disease.


Assuntos
Doença de Crohn/diagnóstico , Endometriose/diagnóstico , Enteropatias/diagnóstico , Obstrução Intestinal/etiologia , Intestino Delgado , Biópsia , Colonoscopia , Diagnóstico Diferencial , Endometriose/complicações , Feminino , Humanos , Enteropatias/complicações , Intestino Delgado/diagnóstico por imagem , Intestino Delgado/patologia , Pessoa de Meia-Idade , Radiografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa