Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(39): 12102-12110, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39297545

RESUMO

Amid the world's escalating energy needs, rechargeable zinc-air batteries stand out because of their environmental sustainability, with their performance being critically dependent on the oxygen reduction reaction (ORR). The inherent slow kinetics of the ORR at air electrodes frequently constrains their operational efficiency. Here, we develop a new self-catalytic approach for in situ growth of carbon nanotubes with new cathode material Co@CoN3/CNTs-800 without external additives. Density functional theory calculation reveals this method integrates nonprecious single-atom catalysis with spatial confinement, facilitating large-scale, in situ fabrication of CNTs, which can support dispersed atomic CoN3 sites and enforce spatial confinement on Co nanoparticles. The Co@CoN3/CNTs-800 electrode achieves an electron transfer number close to ideal (3.9 out of 4.0). In rechargeable zinc-air flow batteries, it achieves a peak power density of 169.5 mW cm-2 and a voltage gap that is only 1.6% larger than the original after 700 h. This work surmounts critical challenges in the ORR kinetics for zinc-air batteries.

2.
Small ; : e2405309, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148192

RESUMO

Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.

3.
Nano Lett ; 23(17): 7797-7804, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37590122

RESUMO

Symmetry plays an essential role in the fundamental properties of a physical system. In this work, we report on the realization of tunable single-mode polariton lasing from highly excited Rydberg states via symmetry engineering. By breaking the symmetry of the polaritonic wave function through potential wells and controlling the spatial overlap between the gain region and the eigen mode, we are able to generate single-mode polariton lasing, reversibly and dynamically, from quantized polariton states. Increasing the asymmetry of the potential well, single-mode lasing can be achieved even for the highly excited Rydberg state with a principle quantum number of N = 14. Moreover, as a result of the excellent reservoir-eigen mode overlap and efficient spatial confinement, the threshold of lasing can be reduced up to 6 orders of magnitude, compared with those conventional pumping schemes. Our results present a new strategy toward the realization of thresholdless polariton lasing with dynamical tunability.

4.
Opt Express ; 31(13): 21924-21934, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381278

RESUMO

Quantum dots (QDs) are exploited in visible light communication (VLC) due to their unique optical properties. However, it is still a challenge to conquer heating generation and photobleaching under prolonged illumination. In this paper, we proposed to utilize hexagonal boron nitride (h-BN) nanoplates to improve the thermal stability and photo stability of QDs and long-distance VLC data rate. After heating to 373 K and cooling to the initial temperature, photoluminescence (PL) emission intensity recovers to 62% of the original intensity and after 33 hours of illumination, PL emission intensity still maintains 80% of the initial intensity, while that of the bare QDs is only 34% and 53%, respectively. The QDs/h-BN composites perform a maximum achievable data rate of 98 Mbit/s by applying on-off keying (OOK) modulation, while the bare QDs are only 78 Mbps. In the process of extending the transmission distance from 0.3 m to 5 m, the QDs/h-BN composites exhibit superior luminosity corresponding to higher transmission data rates than bare QDs. Particularly, when the transmission distance reaches 5 m, the QDs/h-BN composites still show a clear eye diagram at a transmission rate of 50 Mbps while the eye diagram of bare QDs is indistinguishable at 25 Mbps. During 50 hours of continuous illumination, the QDs/h-BN composites keep a relatively stable bit error rate (BER) at 80 Mbps while that of QDs continuously increase, and the -3 dB bandwidth of QDs/h-BN composites keep around10 MHz while the bare QDs decrease from 12.6 MHz to 8.5 MHz. After illumination, the QDs/h-BN composites still indicate a clear eye diagram at a data rate of 50 Mbps while that of pure QDs is indistinguishable. Our results provide a feasible solution for realizing an enhanced transmission performance of QDs in longer-distance VLC.

5.
Environ Res ; 231(Pt 2): 116160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209988

RESUMO

Practical adsorbents with high efficiency are essential to effectively treating wastewater. Herein, a novel porous uranium adsorbent (PA-HCP) having a considerable amount of amine and phosphoryl groups was designed and synthesized by grafting polyethyleneimine (PEI) on a hyper-cross-linked fluorene-9-bisphenol skeleton via phosphoramidate linkers. Furthermore, it was used to treat uranium contamination in the environment. PA-HCP exhibited a large specific surface area (up to 124 m2/g) and a pore diameter of 2.5 nm. Batch uranium adsorptions on PA-HCP were investigated methodically. PA-HCP demonstrated a uranium sorption capacity of >300 mg/g in the pH range of 4-10 (C0 = 60 mg/L, T = 298.15 K), with its maximum capacity reaching 573.51 mg/g at pH = 7. The uranium sorption process obeyed the pseudo-second-order model and fitted well with the Langmuir isothermal. In the thermodynamic experiments, uranium sorption on PA-HCP was revealed to be an endothermic, spontaneous process. Even in the presence of competing metal ions, PA-HCP exhibited excellent sorption selectivity for uranium. Additionally, excellent recyclability can be achieved after six cycles. Based on FT-IR and XPS measurements, both the PO and -NH2 (and/or -NH-) groups on PA-HCP contributed to efficient uranium adsorption as a result of the strong coordination between these groups and uranium. Furthermore, the high hydrophilicity of the grafted PEI improved the dispersion of the adsorbents in water and facilitated uranium sorption. These findings suggest that PA-HCP can be used as an efficient and economical sorbent to remove U(VI) from wastewater.


Assuntos
Polímeros , Urânio , Água , Águas Residuárias , Polietilenoimina , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio
6.
Nano Lett ; 22(7): 3026-3032, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343702

RESUMO

We report the observation of coherent oscillations in the relaxation dynamics of an exciton-polariton condensate that were driven by parametric scattering processes. As a result of the interbranch scattering scheme and the nonlinear polariton-polariton interactions, such parametric scatterings exhibit a high scattering efficiency that leads to the fast depletion of the polariton condensate and the periodic shut-off of the bosonic stimulation processes, eventually causing relaxation oscillations. Employing polariton-reservoir interactions, the oscillation dynamics in the time domain can be projected onto the energy space. In theory, our simulations using the open-dissipative Gross-Pitaevskii equation are in excellent agreement with experimental observations. Surprisingly, the oscillation patterns, including many excitation pulses, are clearly visible in our time-integrated images, implying the high stability of the relaxation oscillations driven by polariton parametric scatterings.

7.
Nano Lett ; 22(5): 2023-2029, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200029

RESUMO

Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. Here, by using a femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity are explicitly visualized. Clear ladder-form build-up processes from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Remarkably, a pronounced superbunching feature, which could serve as solid evidence for bosonic cascades, is demonstrated by the measured second-order time correlation factor. In addition, the nonlinear polariton parametric scattering dynamics on a time scale of hundreds of femtoseconds are revealed. Our understandings pave the way toward ultrafast coherent control of polaritons at room temperature.

8.
Opt Lett ; 47(20): 5393-5396, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240371

RESUMO

Traditional electromagnetic interference shielding windows that can simultaneously reflect microwaves and transmit visible light are usually fabricated by depositing one metal mesh layer on the surface of the window. However, such a structure always suffers from strong Fabry-Perot resonance (FPR), which leads to the decline of shielding effectiveness (SE). Here, we analyze the mechanism of FPR from a perspective of the equivalent circuit model and further report a facile approach to minimize the FPR by depositing another high-resistance mesh layer on the back side of the shielding window, which can greatly reduce reflected waves, ensuring that interference cannot be formed. Simulation results prove that FPR can be effectively eliminated by the proposed method, and experiments further show that for a shielding window made with Schott B270 glass plate, the SE can be enhanced by 6.3 dB (76.6% energy attenuation) at declining points, while transmittance is only reduced by 1.6%.

9.
Chirality ; 34(1): 147-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34749430

RESUMO

Chiral resolution of binaphthylamine is often a toilful conundrum in the field of analytical chemistry and biomedicine. The work puts forward a selective, sensitive, and miniaturized analytical method based on molecularly imprinted polymers (MIPs) as adsorbent for miniaturized tip solid-phase extraction (MTSPE) in the separation of binaphthylamine enantiomer. This method combines the advantages of MIPs (high selectivity), MTSPE (low consumption), and high-performance liquid chromatography (HPLC, high sensitivity). A simple synthesis methodology of MIP (P2) was conducted through bulk polymerization with (S)-(-)-1,1'-binaphthyl-2,2'-diamine (S-DABN) as template together with methacrylic acid monomer, and ethylene glycol dimethacrylate as cross-linker in proper porogen, realizing a selective recognition and efficient enrichment for S-DABN. The method exhibited appreciable linearity (0.06-1.00 mg ml-1 ), low quantification limit (0.056 mg ml-1 ), good absolute recoveries (45.70%-69.29%), and high precision (relative standard deviations ≤ 3.54%), along with low consumption (0.50 ml sample solution and 25.0 mg adsorbent). Based on the density functional theory, computational simulation was used to make a preliminary prediction for rational design of MIPs and gave a reasonable elaboration involving the potential mechanism of templates interacting with functional monomers. The adsorption kinetics and thermodynamics were investigated to evaluate the recombination process of substrates. In addition, the selectivity of MIPs for S-DABN was obtained by MIP-MTSPE coupled with HPLC, which supports the feasibility of this convenient design process. The proposed method was employed for selective extraction of S-DABN and exhibited promising potential in the application of chiral analysis.


Assuntos
Impressão Molecular , Polímeros , Adsorção , Cromatografia Líquida de Alta Pressão , Diaminas , Naftalenos , Extração em Fase Sólida , Estereoisomerismo
10.
Opt Express ; 29(12): 18446-18457, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154100

RESUMO

In this study, a transparent ultra-wideband double-resonance-layer absorber was designed using a semiempirical optimization method. In this method, an equivalent circuit model, genetic algorithm, and parameter fitting are employed to reduce the computation time and improve the design flexibility. Simulations and measurements show that the as-designed absorber can achieve ultrawide microwave absorption in the range of 2.00 to 11.37 GHz with a fractional bandwidth of 140.2%. Furthermore, electric field and surface current distributions show that the broad bandwidth was derived from the good matching of the absorption peaks in the two resonance layers. In addition, the target waveband of the as-designed absorber covered the wavebands of WiFi and radio-frequency identification, as well as part of the 5G waveband. This makes the proposed absorber a good candidate for daily electromagnetic pollution reduction.

11.
Bioorg Chem ; 106: 104506, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276980

RESUMO

Thirteen cationic peptidomimetics derived from amino acids bearing an alkyl or ethynylphenyl moiety that mimic the structure of cationic antibacterial peptides were designed and synthesized using a simple coupling reaction of an amino acid with a substituted amine. Antibacterial activities of the resulting peptidomimetics against drug-sensitive bacteria, such as Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis, Gram-negative Escherichia coli (E. coli) and Salmonella enterica, and a drug-resistant bacterium, methicillin-resistant S. aureus (MRSA), were systematically evaluated. Most peptidomimetics show significant broad-spectrum antibacterial activity. A-L-Iso-C12 (isoleucine derivative bearing a dodecyl moiety) show MICs of 2.5 µg/mL against S. aureus and 4 µg/mL against MRSA and A-L-Val-C12 (valine derivative bearing a dodecyl moiety) show MICs of 1.67 µg/mL against E. coli and 8.3 µg/mL against MRSA. A-L-Val-C12 showed low cytotoxicity toward L929 cells in comparison with SGC 7901 cells, indicating tumor-directed killing by peptidomimetics while avoiding toxicity to normal cells. The influences of type of amino acid and substituent, length of substituent, and stereochemistry of amino acids on antibacterial activity and cytotoxicity of peptidomimetics were systematically investigated. The results indicate that this series of cationic peptidomimetics derived from amino acids display antitumor activity and may be useful for treatment of bacterial infections.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Peptidomiméticos/farmacologia , Aminoácidos/síntese química , Aminoácidos/química , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bacillus subtilis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Nano Lett ; 20(3): 1552-1560, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32097561

RESUMO

Coulomb interactions are essential to the dynamics and optical properties of exciton-polaritons. Here, we report an experimental observation of polariton-polariton interactions far beyond theory in a one-dimensional whispering gallery microcavity. Based on the unique half-light half-matter nature, we were able to clarify the effects of excitons, quantum confinement, and nonthermalized polariton distribution in the measurements of the polaritonic interactions. Spectacularly, our position-scan and power-scan investigations both revealed that the polariton-polariton interaction strength is up to 2 orders of magnitude larger than theoretical predictions. These results suggest that polaritonic interactions are far more complicated than the expectation and should be re-examined in polariton physics and devices involving polaritonic interactions.

13.
Opt Express ; 28(18): 26836-26849, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906950

RESUMO

An excellently transparent metamaterial-based electromagnetic interference (EMI) shielding window with broadband absorption is presented theoretically and demonstrated experimentally. The window is composed of double split circular ring (SCR) elements whose absorption spectra feature two mild resonant peaks. Indium-tin-oxide (ITO) with resonant patterns is utilized as the material to induce high ohmic loss and broaden the absorption bandwidth. The window achieves strong absorptivity, > 90%, covering an ultrawide frequency range of 7.8-18.0 GHz. Moreover, the measured shielding effectiveness (SE) of the window is > 18.25 dB, at 7.0-18.0 GHz, while the average optical transmittance is fixed at ∼73.10% in the visible-near-infrared (Vis-NIR) region of 400-1,500 nm. Further, the absorption mechanism is revealed by designing an equivalent circuit model and studying the distributions of the electric field and surface currents of the structure. Furthermore, a specific design feature also makes our device insensitive to the incident angle and the polarization state of the impinging microwave. The 90% absorption and shielding performance of the proposed optical window avail it for a wide range of great potential applications, such as the displays of military and medical precision devices.

14.
Nanotechnology ; 31(21): 215204, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32015226

RESUMO

We demonstrated strong fluorescence blinking on large all-inorganic perovskite (CsPbBr3) nano-spheres. By performing (time-resolved) micro-photoluminescence (µ-PL) measurements, the unique blinking characteristics of the as-grown nano-spheres with diameters of hundred nanometers, are clearly observed. Blinking has no obvious on/off states, which is different from the blinking characteristics of quantum dots. It is believed that the blinking of fluorescence is caused by metastable defect-induced trapping of carriers on the surface of the nano-spheres, because dramatically suppressed fluorescence blinking and the decay rates of ultrafast carriers are realized by surface passivation of the nano-spheres. Surface defects are closely related to the ambient atmosphere, which has been further confirmed by PL measurements of the as-grown nano-spheres in vacuum. Additionally, we also found that the fluorescence blinking was significantly suppressed as the sample size increased, which can be attributed to the large-size induced average effect on fluorescence blinking. These results may be important for understanding the mechanism of the fluorescence blinking of perovskite materials and for developing optical devices with good fluorescence stability.

15.
Chirality ; 32(5): 547-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105371

RESUMO

Two novel helical poly(phenylacetylene) derivatives containing chiral phenylethyl carbamate residues in the end of each side chain (PPA-S and PPA-R) were synthesized by polymerization of the corresponding phenylacetylene monomers using Rh(nbd)BPh4 as a catalyst in DMF. The enantioseparation properties of the polymers were evaluated as coated-type chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Under the same chromatographic conditions, PPA-S and PPA-R showed different enantioseparation properties, indicating that the different interactions between the analytes and the polymers, which result from the different chiral phenylethyl carbamate groups in the end of each side chains. Racemates 1, 7, and 8 could be better resolved on PPA-S, while racemate 6 was separated on PPA-R more efficiently. In addition, the coated-type CSPs showed good solvent tolerability and could work without any damage by introducing the polar solvents, such as CHCl3 and THF, in eluent. Moreover, some racemates could be better resolved on these coated-type CSPs with the addition of THF to the eluent.

16.
Opt Express ; 27(18): 24938-24944, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510374

RESUMO

We report experimental studies on the dynamics of excited-state condensate for exciton-polaritons confined in an optically generated trap. The three-dimensionally confined trap was realized by imposing two optical barriers onto a one-dimensional ZnO whispering gallery microcavity. Experimentally, we characterized the confined polariton condensate by varying the trap width and the barrier height. Theoretically, we calculated the spatial overlap between the polariton wavefunction and the excitonic reservoir. Direct comparison of these results verified that such polariton-reservoir overlap was responsible for the observed excited-state polariton condensate.

17.
Angew Chem Int Ed Engl ; 58(45): 16134-16140, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31502363

RESUMO

Rubidium lead halides (RbPbX3 ), an important class of all-inorganic metal halide perovskites, are attracting increasing attention for photovoltaic applications. However, limited by its lower Goldschmidt tolerance factor t≈0.78, all-inorganic RbPbBr3 has not been reported. Now, the crystal structure, X-ray diffraction (XRD) pattern, and band structure of perovskite-phase RbPbBr3 has now been investigated. Perovskite-phase RbPbBr3 is unstable at room temperature and transforms to photoluminescence (PL)-inactive non-perovskite. The structural evolution and mechanism of the perovskite-non-perovskite phase transition were clarified in RbPbBr3 . Experimentally, perovskite-phase RbPbBr3 was realized through a dual-source chemical vapor deposition and annealing process. These perovskite-phase microspheres showed strong PL emission at about 464 nm. This new perovskite can serve as a gain medium and microcavity to achieve broadband (475-540 nm) single-mode lasing with a high Q of about 2100.

18.
Opt Express ; 26(9): 11728-11736, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716091

RESUMO

Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.

19.
Opt Express ; 26(14): 18214-18221, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114101

RESUMO

We report experimental studies on the Fabry-Perot (F-P) type polariton modes and their dynamics using a modified Young's double-slit interference technique. The technique was based on the angle-resolved micro-photoluminescence spectroscopy and optimized for nanostructure measurements. Using this technique, we directly revealed the parity of the F-P type polariton modes from the angle-dependent interference spectra. Moreover, clear features of mode competition were observed from the power dependence of the interference patterns. The observed competition behaviors can be well simulated by a five-level rate equation model.

20.
Chirality ; 29(7): 340-347, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28543776

RESUMO

Acrylamide (AM) was copolymerized with ethylene glycol dimethacrylate (EGDMA) in the presence of (R)-1,1'-binaphthalene-2-naphthol (BINOL) as the template molecules on the surface of silica gel by a free radical polymerization to produce a chiral stationary phase based on the surface molecularly imprinted polymer (SMIP-CSP). The SMIP-CSP showed a much better separation factor (α = 4.28) than the CSP based on the molecularly imprinted polymer (MIP-CSP) without coating on the silica gel (α = 1.96) during the chiral separation of BINOL enantiomers by high-performance liquid chromatography. The influence of the pretreatment temperature and the content of the template molecule ((R)-BINOL) of the SMIP-CSP, and the mobile phase composition on the separation of the racemic BINOL were systematically investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa