Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 242: 117770, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029821

RESUMO

Aerobic granular sludge (AGS) needs a long start-up time and always shows unstable performance when it is used to treat low-strength wastewater. In this study, a rapid static feeding combined with Fe2+ addition as a novel strategy was employed to improve the formation and stability of AGS in treating low-strength wastewater. Fe-AGS was formed within only 7 days and showed favorable pollutant removal capability and settling performance. The ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentration in the effluent were lower than 5 mg/L and 50 mg/L after day 23, respectively. The sludge volume index (SVI) and mixed liquid suspended solids (MLSS) was 37 mL/g and 2.15 g/L on day 50, respectively. Rapid static feeding can accelerate granules formation by promoting the growth of heterotrophic bacteria, but the granules are unstable due to filamentous bacteria overgrowth. Fe2+ addition can inhibit the growth of filamentous bacteria and promote the aggregation of functional bacteria (eg. Nitrosomonas, Nitrolancea, Paracoccus, Diaphorobacter) by enhancing the secretion of extracellular polymeric substances (EPS). This study provides a new way for AGS application in low-strength wastewater treatment.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos/microbiologia , Nitrogênio
2.
Environ Res ; 259: 119541, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960353

RESUMO

Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.

3.
Environ Res ; 217: 114939, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435490

RESUMO

To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Esgotos/microbiologia , Concentração de Íons de Hidrogênio
4.
J Environ Manage ; 329: 117088, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584508

RESUMO

The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.


Assuntos
Nitrificação , Poluentes Químicos da Água , Águas Residuárias , Desnitrificação , Reprodutibilidade dos Testes , Resíduos Sólidos , Esgotos/química , Reatores Biológicos , Poluentes Químicos da Água/química , Nitrogênio/química , Oxirredução
5.
J Environ Sci (China) ; 124: 630-643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182169

RESUMO

The feasibility of decomplexation removal of typical contaminants in electroplating wastewater, complexed Cu(II) with 1-hydroxyethylidene-1,1-diphosphonic acid (Cu-HEDP), was first performed by a three-dimensional electrode reactor with activated biochar as particle electrodes. For the case of 50 mg/L Cu-HEDP, Cu(II) removal (90.7%) and PO43- conversion (34.9%) were achieved under the conditions of electric current 40 mA, initial pH 7, acid-treated almond shell biochar (AASB) addition 20 g/L, and reaction time 180 min, with second-order rate constants of 1.10 × 10-3 and 1.94 × 10-5 min-1 respectively. The growing chelating effect between Cu(II) and HEDP and the comprehensive actions of adsorptive accumulation, direct and indirect oxidation given by particle electrodes accounted for the enhanced removal of Cu-HEDP, even though the mineralization of HEDP was mainly dependent on anode oxidation. The performance attenuation of AASB particle electrodes was ascribed to the excessive consumption of oxygen-containing functionalities during the reaction, especially acidic carboxylic groups and quinones on particle electrodes, which decreased from 446.74 to 291.48 µmol/g, and 377.55 to 247.71 µmol/g, respectively. Based on the determination of adsorption behavior and indirect electrochemical oxidation mediated by in situ electrogenerated H2O2 and reactive oxygen species (e.g., •OH), a possible removal mechanism of Cu-HEDP by three-dimensional electrolysis was further proposed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal , Eletrodos , Eletrólise/métodos , Ácido Etidrônico , Peróxido de Hidrogênio , Oxirredução , Oxigênio , Quinonas , Espécies Reativas de Oxigênio
6.
J Environ Sci (China) ; 124: 758-768, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182180

RESUMO

To achieve advanced nitrogen removal from actual municipal sewage, a novel multistage anoxic/aerobic process with sludge regeneration zone (R-MAO) was developed. The reactor was used to treat actual domestic sewage and the nitrogen removal capacity of the sludge regeneration zone (R zone) was investigated during the long-term operation. The best performance was obtained at the R zone's Oxidation-Reduction Potential (ORP) of -50±30 mV and hydraulic residence times (HRT) of 1.2 hr. The average effluent COD, TN, NH4+-N and NO3--N of the R-MAO process were 18.0±2.3, 7.5±0.6, 1.0±0.5 and 4.6±0.4 mg/L, respectively, with the corresponding removal efficiency of COD, TN and NH4+-N were 92.9%±1.0%, 84.1%±1.5% and 97.5%±1.1%. Compared to the sole MAO system, the TN removal efficiency of the R-MAO increased by 10.1%. Besides, under the optimal conditions, the contribution of the R zone in the R-MAO that removal COD, TN, NH4+-N and NO3--N were 0.36, 0.15, 0.032 and 0.82 g/day. High-throughput sequencing results showed that uncultured_bacterium_f_Burkholderiaceae (5.20%), OLB8 (1.04%) and Ottowia (1.03%) played an important role in denitrification in the R zone. This study provided effective guidance for the design and operation of the R-MAO process in domestic sewage treatment.


Assuntos
Nitrogênio , Esgotos , Reatores Biológicos , Desnitrificação , Monoaminoxidase , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Environ Res ; 204(Pt D): 112374, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800537

RESUMO

Seawater desalination is one of the most applied approaches for freshwater replenishment. However, the process not only generates freshwater but also consumes it. It is important to evaluate the balance of the production and consumption of freshwater in desalination, which is also called as water footprint. It will reveal the feasibility of seawater desalination in terms of water production, but related study has not been reported. In this study, the water footprint of reverse osmosis desalination process has been investigated based on a real reverse osmosis desalination plant data. According to the calculation, the freshwater utilization of the reverse osmosis desalination plant was about 8.16 × 10-3 m3 with 1 m3 freshwater production. The study reveals that RO desalination is freshwater gain process as the utilized freshwater amount was less than the one produced. The sensitivity study showed that the energy source used in the process was the most significant parameter affecting on the water footprint. The freshwater required in the reverse osmosis desalination with energy supplied by thermal and solar was 8.01 × 10-3 m3 and 9.90 × 10-3 m3 in 1 m3 freshwater generation, respectively. It suggests that energy source selection is important in RO desalination system.


Assuntos
Purificação da Água , Filtração , Osmose , Água do Mar , Água
8.
J Environ Manage ; 322: 116140, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070652

RESUMO

Extensive presence of aromatic organic compounds (AOCs) is a major course for the non-biodegradability of coking wastewater (COW). In-depth understanding of bio-degradation of AOCs is crucial for optimizing the design and operation of COW biological treatment systems in practical applications. Herein, the behavior and fate of AOCs were explored in a lab-scale step-feed three-stage integrated A/O biofilter (SFTIAOB) treating synthetic COW. Long-term operation demonstrated that COD, phenol, indole, quinoline and pyridine could be simultaneously removed. Phenol and indole were chiefly removed by anoxic zones, while quinoline and pyridine removal occurred in both anoxic and aerobic zones. Ultraviolet-visible spectrum observed that initial carboxylation and subsequent ring cracking and mineralization. Infrared spectroscopy also confirmed that key functional groups were cracked and produced during AOCs bio-degradation. Three-dimensional fluorescence spectrum indicated that significant transformation and elimination of tryptophan and humic acid with high molecular weight. Ring cleavage, distinct degradation and even complete mineralization of complex AOCs were further verified by gas chromatography-mass spectrometry. Moreover, functional degrading bacteria and aromatic ring-cleavage enzymes was successfully identified. Finally, AOCs biodegradation mechanisms by alternating anoxic and aerobic treatment was unraveled. This research provides thorough insights on AOCs biodegradation using a step-feed multi-stage alternating anoxic/oxic COW treatment process.


Assuntos
Coque , Quinolinas , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Coque/análise , Substâncias Húmicas/análise , Indóis/análise , Compostos Orgânicos/análise , Fenol/análise , Piridinas/análise , Esgotos/química , Triptofano , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
9.
J Environ Manage ; 255: 109849, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760298

RESUMO

Phosphate removal through in-situ Fe2+ oxidation induced homogenous phosphate precipitation has shown its advantages in municipal wastewater treatment. Its feasibility and suitability for phosphate removal in industrial wastewater with wide-range pH variation like electro-plating wastewater were investigated in bench scale experiments using synthetic wastewater and continuous experiment using real wastewater. Bench scale experiments showed that different Fe2+ oxidation approaches worked well for phosphate removal at varied pH conditions. Sole dosing Fe2+ salt with aeration achieved sound phosphate removal at alkaline condition (pH ≥ 8). At neutral pH (6 < pH < 8), transition metallic ions catalytic oxidation is a suitable alternative. Cu2+ exhibited superior catalytic Fe2+ oxidization over Mn2+, Zn2+, and Ni2+. At acid pH (3.0 < pH ≤ 6.0), Fenton reaction oxidation (H2O2 = 5 mg/L) showed its efficiency. At their corresponding optimal pH conditions and with Fe2+/P ratio of 1.8, dosing sole Fe2+ salt, Cu2+ catalyzed Fe2+ oxidation, and Fe2+/H2O2 treatments can achieve the TP discharge limit of 0.5 mg/L. In a 30-day continuous experiment using real electro-plating wastewater (pH 4.9-5.5), in both direct Fe2+/H2O2 treatment and Cu2+ catalyzed Fe2+ oxidation treatment after wastewater pH being adjusted to 7 effluent TP met China's discharge requirement 0.5 mg/L.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , China , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Fosfatos , Eliminação de Resíduos Líquidos
10.
Water Sci Technol ; 79(3): 580-588, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30924813

RESUMO

Fe-C micro-electrolysis was employed to the pretreatment of evaporated condensate generated during metal cutting process. The effect of the reaction conditions on the contaminant removal and degradation mechanism were studied. Through single-factor experiments, the effects of solid-liquid ratio, gas-liquid ratio and reaction time on the treatment of wastewater were preliminarily determined. The optimal reaction condition obtained was: 500 g/L solid-liquid ratio, 30:1 gas-liquid ratio with 4 h reaction time. Under the optimal condition, the chemical oxygen demand (COD) removal efficiency of micro-electrolysis could reach around 25%, and the biodegradability of wastewater increased from 0.12 to 0.32. According to the analysis results of gas chromatography-mass spectrometry (GC-MS) qualitative analysis, it was observed that the most organic contaminants in the influent were degraded or converted into simple structures under Fe-C micro-electrolysis, indicates that Fe-C micro-electrolysis pretreatment could improve the biodegradability of the evaporated condensate generated during metal cutting process and achieve certain degree removal of COD.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Eletrólise , Metais , Águas Residuárias
11.
Crit Rev Biotechnol ; 38(6): 902-917, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29510650

RESUMO

Utilization of microbial oil for biodiesel production has gained growing interest due to the increase in prices and the shortage of the oils and fats traditionally used in biodiesel production. However, it is still in the laboratory study stage due to the high cost of production. Employing organic wastes as raw materials to grow heterotrophic oleaginous microorganisms for further lipid production to produce biodiesel has been predicted to be a promising method for reducing costs. However, there are many obstacles including the low biodegradability of organic wastes, low lipid accumulation capacity of heterotrophic oleaginous microorganisms while using organic wastes, a great dependence on a high-energy consumption approach for biomass harvesting, utilization of toxic organic solvents for lipid extraction, and large amount of methanol required in trans-esterification and in-situ trans-esterifications. Ultra-sonication as a green technology has been extensively utilized to enhance bio-product production from organic wastes. In this article, ultra-sonication applications in biodiesel production steps with heterotrophic oleaginous microorganisms have been reviewed, and its impact, potential, and limitations on the process have been discussed.


Assuntos
Biocombustíveis , Microbiologia Industrial/métodos , Sonicação , Esterificação , Lipídeos
12.
J Environ Manage ; 222: 37-43, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29800863

RESUMO

Water supply was vital to people's life, especially inside Controlled Ecological Life Support System (CELSS) for long-term space exploration. A platform of 4-person-180-day integrated experiment inside a CELSS including 6 cabins called 'SPACEnter' was established in Shenzhen, China. Based on this platform, a Membrane Bio-Reactor (MBR) system configuring post advanced purification, including I-MBR, II-MBR, nanofiltration (NF), reverse osmosis (RO), ion-exchange (IE), polyiodide disinfection (PI) and mineralization (MC) stages, used as a Domestic Water Supply System (DWSS) to guarantee crew's daily life was constructed. The performance of DWSS to treat the real plant cabin's condensate water was examined during continuously 180-day experiment. The long-term operation results showed that, though the influent pollutant load changed as the experiment processing, the system exhibited stable performance on pollutants removal with average effluent TOC<0.5 mg/L, NH4+-N<0.02 mg/L, NO3--N<0.25 mg/L, NO2--N<0.001 mg/L, and displayed good capacity for controlling the trace metal ions and microorganism. The effluent through such modified MBR system was sufficiently allocated as hygiene water and potable water, and the average value was 39.69 and 10.93 L/d, respectively. The consumption of the modified MBR process was within the designed allowable scope. The outcomes of this study will be helpful for facilitating future applications of MBR as bio-based water supply technology in the CELSS.


Assuntos
Purificação da Água , Abastecimento de Água , Reatores Biológicos , China , Membranas Artificiais , Osmose , Eliminação de Resíduos Líquidos , Água
13.
Environ Sci Technol ; 50(19): 10554-10561, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27607769

RESUMO

Hydrated electron (eaq-) induced reduction techniques are promising for decomposing recalcitrant organic pollutants. However, its vigorous reactivity with copresent scavenging species and the difficulty in minimizing the competitive reactions make the proportion of eaq- participating in pollutant decomposition low, reflecting by slow decomposition kinetics. In this study, a high photon flux UV/sulfite system was employed to promote eaq- production. Its feasibility in enhancing a notorious recalcitrant pollutant, PFOS, decomposition was investigated. The effective photon flux utilized for producing eaq- was 9.93 × 10-8 einstein/cm2·s. At initial solution pH 9.2, with DO about 5 mg/L, and at around 25 °C, 98% PFOS was decomposed within 30 min from its initial concentration of 32 µM. The kobs of PFOS decomposition was 0.118 min-1 (7.08 h-1), and about 8-400 folds faster than those obtained in other reductive approaches. In this system, PFOS decomposition showed can tolerate copresent 7 mg N/L of NO3-. Suggested by molecular orbitals and thermodynamic analyses, the mechanisms responsible for PFOS decomposition involve defluorination, desulfonation, and centermost C-C bond scission. By demonstrating a more practical relevant treatment process, the outcomes of this study would be helpful for facilitating future applications of eaq- induced reduction techniques for efficient recalcitrant pollutants decomposition.


Assuntos
Fótons , Sulfitos/química , Elétrons , Cinética , Soluções
14.
Chemosphere ; 346: 140538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303397

RESUMO

To enhance the polarization distribution of electron cloud density on the catalyst surface, we have introduced a novel bimetallic-substituted dual-reaction center (DRC) catalyst (FeCo-γ-Al2O3) comprising iron (Fe) and cobalt (Co) for the decomplexation and mineralization of heavy metal complex Ni-EDTA in this study. Compared to the catalysts doped solely with Fe or Co, the bimetal-doped catalyst offered several advantages, including enhanced electron cloud polarization distribution, additional electron transfer pathway, and improved capacity of free radical generation. Through DFT calculations and EPR tests, we have elucidated the influences of the catalyst's adsorption toward Ni-EDTA and its decomplexation products on the electron transfer between the pollutant and the catalyst. The competition between the pollutants and H2O2 affects the generation of free radicals in both electron-rich Fe and Co centers as well as electron-deficient Al center. Building on these findings, we have proposed a plausible removal mechanism of Ni-EDTA using the heterogeneous Fenton-like catalyst FeCo-γ-Al2O3. This study sheds light on the potential of FeCo-γ-Al2O3 as a DRC catalyst and emphasizes the significance of pollutant characteristics in determining the catalyst's performance.


Assuntos
Elétrons , Poluentes Ambientais , Ácido Edético , Peróxido de Hidrogênio , Ferro , Catálise , Cobalto
15.
Bioresour Technol ; : 130947, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897548

RESUMO

Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.

16.
Water Res ; 251: 121107, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218075

RESUMO

Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge. The application of the LSM in advanced biofilm management for AME-D resulted in a substantial enhancement of denitrification performance. Our experimental results demonstrated remarkable improvements in nitrate-removal flux (92.8 mmol-N m-2 d-1) and methane-oxidation rate (325.6 mmol m-2 d-1) when using an LSM in a membrane biofilm reactor (L-MBfR) compared with a conventional membrane reactor (C-MBfR). The l-MBfR exhibited 12.4-, 6.8- and 3.4-fold increases in nitrate-removal rate, biomass-retention capacity, and methane-oxidation rate, respectively, relative to the control C-MBfR. Notably, the l-MBfR demonstrated a 3.5-fold higher abundance of denitrifying bacteria, including Xanthomonadaceae, Rhodocyclaceae, and Methylophilaceae. In addition, the denitrification-related enzyme activity was twice as high in the l-MBfR than in the C-MBfR. These findings underscore the LSM's ability to create anoxic/anaerobic microenvironments conducive to biofilm formation and denitrification. Furthermore, the LSM exhibited a unique advantage in shaping microbial community structures and facilitating cross-feeding interactions between denitrifying bacteria and aerobic methanotrophs. The results of this study hold great promise for advancing the application of MBfRs in achieving efficient and reliable nitrate removal through the AME-D pathway, facilitated by effective biofilm management.


Assuntos
Metano , Nitratos , Metano/metabolismo , Nitratos/metabolismo , Desnitrificação , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Oxirredução , Biofilmes , Nitrogênio/metabolismo
17.
Sci Total Environ ; 939: 173518, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815824

RESUMO

To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation.


Assuntos
Fermentação , Microplásticos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Microplásticos/toxicidade , Esgotos/microbiologia , Redes e Vias Metabólicas , Poluentes Químicos da Água , Ácidos Graxos Voláteis/metabolismo , Microbiota/efeitos dos fármacos , Reatores Biológicos
18.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575032

RESUMO

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Assuntos
Durapatita , Peróxidos , Poluentes Químicos da Água , Durapatita/química , Poluentes Químicos da Água/análise , Peróxidos/química , Metais Pesados , Sedimentos Geológicos/química , Recuperação e Remediação Ambiental/métodos
19.
J Environ Sci (China) ; 25(5): 1007-14, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218832

RESUMO

The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (< or = 20 mg/L). Over the study period, the average NO3(-)-N concentrations were significantly higher in agro-ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.


Assuntos
Água Subterrânea/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Agricultura , China , Ecossistema , Monitoramento Ambiental , Árvores
20.
Bioresour Technol ; 379: 128823, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36871701

RESUMO

In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 µg/L of SMX addition during long-term operation. The NH4+, chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.


Assuntos
Microbiota , Sulfametoxazol , Sulfametoxazol/farmacologia , Esgotos/microbiologia , Antibacterianos/farmacologia , Reatores Biológicos/microbiologia , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa