RESUMO
In recent years, major advances have been made in the understanding of the cellular and molecular mechanisms driving pulmonary vascular remodelling in various forms of pulmonary hypertension, including pulmonary arterial hypertension, pulmonary hypertension associated with left heart disease, pulmonary hypertension associated with chronic lung disease and hypoxia, and chronic thromboembolic pulmonary hypertension. However, the survival rates for these different forms of pulmonary hypertension remain unsatisfactory, underscoring the crucial need to more effectively translate innovative scientific knowledge into healthcare interventions. In these proceedings of the 7th World Symposium on Pulmonary Hypertension, we delve into recent developments in the field of pathology and pathophysiology, prioritising them while questioning their relevance to different subsets of pulmonary hypertension. In addition, we explore how the latest omics and other technological advances can help us better and more rapidly understand the myriad basic mechanisms contributing to the initiation and progression of pulmonary vascular remodelling. Finally, we discuss strategies aimed at improving patient care, optimising drug development, and providing essential support to advance research in this field.
Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , AnimaisRESUMO
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Assuntos
Hipertensão Pulmonar , Doenças Pulmonares Intersticiais , Disfunção Ventricular Direita , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/epidemiologia , Pulmão , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/tratamento farmacológico , Vasodilatadores , Disfunção Ventricular Direita/tratamento farmacológicoRESUMO
Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.
Assuntos
Hiperemia , Hipertensão Pulmonar , Veias Pulmonares , Ratos , Animais , Remodelação Vascular , Ratos Endogâmicos WKYRESUMO
Pulmonary fibrosis (PF) and pulmonary hypertension (PH) are chronic diseases of the pulmonary parenchyma and circulation, respectively, which may coexist, but underlying mechanisms remain elusive. Mutations in the GCN2 (general control nonderepressible 2) gene (EIF2AK4 [eukaryotic translation initiation factor 2 alpha kinase 4]) were recently associated with pulmonary veno-occlusive disease. The aim of this study is to explore the involvement of the GCN2/eIF2α (eukaryotic initiation factor 2α) pathway in the development of PH during PF, in both human disease and in a laboratory animal model. Lung tissue from patients with PF with or without PH was collected at the time of lung transplantation, and control tissue was obtained from tumor resection surgery. Experimental lung disease was induced in either male wild-type or EIF2AK4-mutated Sprague-Dawley rats, randomly receiving a single intratracheal instillation of bleomycin or saline. Hemodynamic studies and organ collection were performed 3 weeks after instillation. Only significant results (P < 0.05) are presented. In PF lung tissue, GCN2 protein expression was decreased compared with control tissue. GCN2 expression was reduced in CD31+ endothelial cells. In line with human data, GCN2 protein expression was decreased in the lung of bleomycin rats compared with saline. EIF2AK4-mutated rats treated with bleomycin showed increased parenchymal fibrosis (hydroxyproline concentrations) and vascular remodeling (media wall thickness) as well as increased right ventricular systolic pressure compared with wild-type animals. Our data show that GCN2 is dysregulated in both humans and in an animal model of combined PF and PH. The possibility of a causative implication of GCN2 dysregulation in PF and/or PH development should be further studied.
Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Animais , Humanos , Masculino , Ratos , Bleomicina , Células Endoteliais/patologia , Hipertensão Pulmonar/patologia , Pulmão/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/patologia , Ratos Sprague-DawleyRESUMO
BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Terapia Genética/métodos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Complexo Correpressor Histona Desacetilase e Sin3/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Hipertensão Arterial Pulmonar/genética , Ratos , Ratos Sprague-Dawley , Complexo Correpressor Histona Desacetilase e Sin3/metabolismoRESUMO
BACKGROUND: Pulmonary endarterectomy (PEA) is the gold standard treatment for patients with operable chronic thromboembolic pulmonary hypertension. However, persistent pulmonary hypertension (PH) after PEA remains a major determinant of poor prognosis. A concomitant small-vessel arteriopathy in addition to major pulmonary artery obstruction has been suggested to play an important role in the development of persistent PH and survival after PEA. One of the greatest unmet needs in the current preoperative evaluation is to assess the presence and severity of small-vessel arteriopathy. Using the pulmonary artery occlusion technique, we sought to assess the presence and degree of small-vessel disease in patients with chronic thromboembolic pulmonary hypertension undergoing PEA to predict postoperative outcome before surgery. METHODS: Based on pulmonary artery occlusion waveforms yielding an estimate of the effective capillary pressure, we partitioned pulmonary vascular resistance in larger arterial (upstream resistance [Rup]) and small arterial plus venous components (downstream resistance) in 90 patients before PEA. For validation, lung wedge biopsies were taken from nonobstructed and obstructed lung territories during PEA in 49 cases. Biopsy sites were chosen according to the pulmonary angiogram still frames that were mounted in the operating room. All vessels per specimen were measured in each patient. Percent media (%MT; arteries) and intima thickness (%IT; arteries, veins, and indeterminate vessels) were calculated relative to external vessel diameter. RESULTS: Decreased Rup was an independent predictor of persistent PH (odds ratio per 10%, 0.40 [95% CI, 0.23-0.69]; P=0.001) and survival (hazard ratio per 10%, 0.03 [95% CI, 0.00-0.33]; p=0.004). Arterial %MT and %IT of nonobstructed lung territories and venous %IT of obstructed lung territories were significantly increased in patients with persistent PH and nonsurvivors. Rup correlated inversely with %MT (r=-0.72, P<0.001) and %IT (r=-0.62, P<0.001) of arteries from nonobstructed lung territories and with %IT (r=-0.44, P=0.024) of veins from obstructed lung territories. Receiver operating characteristic analysis disclosed that Rup <66% predicted persistent PH after PEA, whereas Rup <60% identified patients with poor prognosis after PEA. CONCLUSIONS: Pulmonary artery occlusion waveform analysis with estimation of Rup seems to be a valuable technique for assessing the degree of small-vessel disease and postoperative outcome after PEA in chronic thromboembolic pulmonary hypertension.
Assuntos
Hemodinâmica/fisiologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Doenças Vasculares/fisiopatologia , Adulto , Doença Crônica , Feminino , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Artéria Pulmonar/patologia , Embolia Pulmonar/complicações , Embolia Pulmonar/fisiopatologia , Doenças Vasculares/diagnóstico , Resistência Vascular/fisiologiaRESUMO
PURPOSE: Common variable immunodeficiency (CVID) is known to cause infectious, inflammatory, and autoimmune manifestations. Pulmonary hypertension (PH) is an unusual complication of CVID with largely unknown characteristics and mechanisms. METHODS: We report the clinical, functional, hemodynamics, radiologic and histologic characteristics, and outcomes of CVID-associated PH patients from the French PH Network. RESULTS: Ten patients were identified. The median (range) age at CVID diagnosis was 36.5 (4-49) years and the median delay between CVID and PH diagnosis was 12 (0-30) years. CVID-associated PH affected predominantly women (female-to-male ratio 9:1). Most patients were New York Heart Association functional class III with a severe hemodynamic profile and frequent portal hypertension (n = 6). Pulmonary function tests were almost normal in 70% of patients and showed a mild restrictive syndrome in 30% of patients while the diffusing capacity for carbon monoxide was decreased in all but one patient. High-resolution computed tomography found enlarged mediastinal nodes, mild interstitial infiltration with reticulations and nodules. Two patients had a CIVD-interstitial lung disease, and one presented with bronchiectasis. Pathologic assessment of lymph nodes performed in 5 patients revealed the presence of granulomas (n = 5) and follicular lymphoid hyperplasia (n = 3). At last follow-up (median 24.5 months), 9 patients were alive, and one patient died of Hodgkin disease. CONCLUSION: PH is a possible complication of CVID whose pathophysiological mechanisms, while still unclear, would be due to the inflammatory nature of CVID. CVID-associated PH presents as precapillary PH with multiple possible causes, acting in concert in some patients: a portal hypertension, a pulmonary vascular remodeling, sometimes a pulmonary parenchymal involvement and occasionally an extrinsic compression by mediastinal lymphadenopathies, which would be consistent with its classification in group 5 of the current PH classification.
Assuntos
Imunodeficiência de Variável Comum/complicações , Hipertensão Pulmonar/etiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Imunodeficiência de Variável Comum/diagnóstico por imagem , Imunodeficiência de Variável Comum/patologia , Imunodeficiência de Variável Comum/terapia , Feminino , França , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/terapia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID19. We describe the clinical, radiological and histological findings of patients with COVID19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID19 and might partially explain why a subgroup of COVID19 patients benefits from systemic corticosteroids.
Assuntos
COVID-19/complicações , Pulmão/diagnóstico por imagem , Pneumonia/etiologia , SARS-CoV-2 , Idoso , Biópsia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Tomografia Computadorizada por Raios XRESUMO
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism, either symptomatic or not. The occlusion of proximal pulmonary arteries by fibrotic intravascular material, in combination with a secondary microvasculopathy of vessels <500â µm, leads to increased pulmonary vascular resistance and progressive right heart failure. The mechanism responsible for the transformation of red clots into fibrotic material remnants has not yet been elucidated. In patients with pulmonary hypertension, the diagnosis is suspected when a ventilation/perfusion lung scan shows mismatched perfusion defects, and confirmed by right heart catheterisation and vascular imaging. Today, in addition to lifelong anticoagulation, treatment modalities include surgery, angioplasty and medical treatment according to the localisation and characteristics of the lesions.This statement outlines a review of the literature and current practice concerning diagnosis and management of CTEPH. It covers the definitions, diagnosis, epidemiology, follow-up after acute pulmonary embolism, pathophysiology, treatment by pulmonary endarterectomy, balloon pulmonary angioplasty, drugs and their combination, rehabilitation and new lines of research in CTEPH.It represents the first collaboration of the European Respiratory Society, the International CTEPH Association and the European Reference Network-Lung in the pulmonary hypertension domain. The statement summarises current knowledge, but does not make formal recommendations for clinical practice.
Assuntos
Angioplastia com Balão , Hipertensão Pulmonar , Embolia Pulmonar , Doença Crônica , Endarterectomia , Humanos , Artéria PulmonarRESUMO
Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.
Assuntos
Transtornos Cerebrovasculares/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Nefropatias/fisiopatologia , Doenças Musculares/fisiopatologia , Hipertensão Arterial Pulmonar/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Artérias Brônquicas/patologia , Artérias Brônquicas/fisiopatologia , Circulação Cerebrovascular , Doença da Artéria Coronariana/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Nefropatias/metabolismo , Doenças Musculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Músculos Respiratórios/fisiopatologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/fisiopatologia , Vasodilatação , Disfunção Ventricular Direita/metabolismoRESUMO
Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Pulmão/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Terapia Genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Remodelação Vascular/efeitos dos fármacosRESUMO
Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.
Assuntos
Pneumopatia Veno-Oclusiva/metabolismo , Pneumopatia Veno-Oclusiva/patologia , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Mutação/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Transdução de Sinais/fisiologia , Fator de Transcrição CHOP/metabolismoRESUMO
BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Inflamação/metabolismo , Neointima/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Transgênicos , Transdução de Sinais/fisiologiaRESUMO
Hepatic veno-occlusive disease (HVOD), alias sinusoidal obstruction syndrome, may develop as a complication of chemotherapy in the setting of hematopoietic stem cell transplantation. HVOD is less frequently described after exposure to chemotherapy in the nontransplant setting and can also be a complication after ingestion of toxins, such as pyrrolizidine alkaloids. Veno-occlusive disease may also affect the lungs, and it is therefore termed pulmonary veno-occlusive disease (PVOD). Similarly, PVOD can develop after exposure to chemotherapeutic agents in the treatment of solid and hematological malignancies. In addition, PVOD has also been linked to autoimmune disorders and occupational solvent exposure. Finally, the heritable form of PVOD is due to biallelic mutations of the EIF2AK4 gene. Both HVOD and PVOD share common histopathological features and pathophysiologic mechanisms. Both clinical disorders are rare complications that can appear after exposure to the common inciting trigger of chemotherapeutic agents. The present review aims to summarize the current knowledge of HVOD and PVOD and to describe both similarities as well as differences regarding both conditions.
Assuntos
Hepatopatia Veno-Oclusiva/patologia , Pneumopatia Veno-Oclusiva/patologia , Animais , Diagnóstico Diferencial , Modelos Animais de Doenças , Predisposição Genética para Doença , Hepatopatia Veno-Oclusiva/diagnóstico , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/terapia , Humanos , Prognóstico , Pneumopatia Veno-Oclusiva/diagnóstico , Pneumopatia Veno-Oclusiva/etiologia , Pneumopatia Veno-Oclusiva/terapia , Ratos , Fatores de RiscoRESUMO
Heightened pulmonary artery smooth muscle cell (PA-SMC) proliferation and migration and dynamic remodeling of the extracellular matrix are hallmark pathogenic features of pulmonary arterial hypertension (PAH). Pirfenidone (PFD) is an orally bioavailable pyridone derivative with antifibrotic, antiinflammatory, and antioxidative properties currently used in the treatment of idiopathic pulmonary fibrosis. We therefore evaluated the efficacy of curative treatments with PFD in the sugen/hypoxia (SuHx) rat model of severe pulmonary hypertension. Treatment with PFD (30 mg/kg per day by mouth 3 times a day for 3 wk) started 5 wk after sugen injection partially reversed established pulmonary hypertension, reducing total pulmonary vascular resistance and remodeling. Consistent with these observations, we found that continued PFD treatment decreases PA-SMC proliferation and levels of extracellular matrix deposition in lungs and right ventricles in SuHx rats. Importantly, PFD attenuated the proproliferative and promigratory potentials of cultured PA-SMCs from patients with idiopathic PAH and their capacity to produce extracellular matrix components. Finally, we found that PFD dose dependently enhanced forkhead box O1 protein levels and its nuclear translocation in cultured idiopathic PAH PA-SMCs and in PFD-treated SuHx rats. PFD appears to be a potential therapy for PAH worthy of investigation and evaluation for clinical use in conjunction with current PAH treatments.-Poble, P.-B., Phan, C., Quatremare, T., Bordenave, J., Thuillet, R., Cumont, A., Huertas, A., Tu, L., Dorfmüller, P., Humbert, M., Ghigna, M.-R., Savale, L., Guignabert, C. Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension.
Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/fisiopatologia , Piridonas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Remodelação Vascular/efeitos dos fármacosRESUMO
BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.
Assuntos
Ácido Glutâmico/metabolismo , Hipertensão Pulmonar/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelação Vascular , Animais , Apoptose/efeitos dos fármacos , Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Endotelina-1/farmacologia , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacosRESUMO
BACKGROUND: The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). METHODS: Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. RESULTS: Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. CONCLUSIONS: RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.
Assuntos
Inibidores da Colinesterase/uso terapêutico , Endotélio Vascular/patologia , Hipertensão Pulmonar/metabolismo , Sistema Nervoso Parassimpático , Artéria Pulmonar/patologia , Brometo de Piridostigmina/uso terapêutico , Disfunção Ventricular Direita/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Remodelação Vascular , Disfunção Ventricular Direita/tratamento farmacológico , Função Ventricular DireitaRESUMO
In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-ß or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.
Assuntos
Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Idoso , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismoRESUMO
Clinical and translational research has played a major role in advancing our understanding of pulmonary hypertension (PH), including pulmonary arterial hypertension and other forms of PH with severe vascular remodelling (e.g. chronic thromboembolic PH and pulmonary veno-occlusive disease). However, PH remains an incurable condition with a high mortality rate, underscoring the need for a better transfer of novel scientific knowledge into healthcare interventions. Herein, we review recent findings in pathology (with the questioning of the strict morphological categorisation of various forms of PH into pre- or post-capillary involvement of pulmonary vessels) and cellular mechanisms contributing to the onset and progression of pulmonary vascular remodelling associated with various forms of PH. We also discuss ways to improve management and to support and optimise drug development in this research field.