Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Chem Biol ; 17(8): 878-887, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34045745

RESUMO

In ovoid-shaped, Gram-positive bacteria, MapZ guides FtsZ-ring positioning at cell equators. The cell wall of the ovococcus Streptococcus mutans contains peptidoglycan decorated with serotype c carbohydrates (SCCs). In the present study, we identify the major cell separation autolysin AtlA as an SCC-binding protein. AtlA binding to SCC is attenuated by the glycerol phosphate (GroP) modification. Using fluorescently labeled AtlA constructs, we mapped SCC distribution on the streptococcal surface, revealing enrichment of GroP-deficient immature SCCs at the cell poles and equators. The immature SCCs co-localize with MapZ at the equatorial rings throughout the cell cycle. In GroP-deficient mutants, AtlA is mislocalized, resulting in dysregulated cellular autolysis. These mutants display morphological abnormalities associated with MapZ mislocalization, leading to FtsZ-ring misplacement. Altogether, our data support a model in which maturation of a cell wall polysaccharide provides the molecular cues for the recruitment of cell division machinery, ensuring proper daughter cell separation and FtsZ-ring positioning.


Assuntos
Parede Celular/metabolismo , Polissacarídeos/metabolismo , Streptococcus mutans/metabolismo , Divisão Celular , Parede Celular/química , Polissacarídeos/química , Streptococcus mutans/citologia
2.
Biochem J ; 478(4): 685-701, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33599745

RESUMO

Rhamnose is an important 6-deoxy sugar present in many natural products, glycoproteins, and structural polysaccharides. Whilst predominantly found as the l-enantiomer, instances of d-rhamnose are also found in nature, particularly in the Pseudomonads bacteria. Interestingly, rhamnose is notably absent from humans and other animals, which poses unique opportunities for drug discovery targeted towards rhamnose utilizing enzymes from pathogenic bacteria. Whilst the biosynthesis of nucleotide-activated rhamnose (NDP-rhamnose) is well studied, the study of rhamnosyltransferases that synthesize rhamnose-containing glycoconjugates is the current focus amongst the scientific community. In this review, we describe where rhamnose has been found in nature, as well as what is known about TDP-ß-l-rhamnose, UDP-ß-l-rhamnose, and GDP-α-d-rhamnose biosynthesis. We then focus on examples of rhamnosyltransferases that have been characterized using both in vivo and in vitro approaches from plants and bacteria, highlighting enzymes where 3D structures have been obtained. The ongoing study of rhamnose and rhamnosyltransferases, in particular in pathogenic organisms, is important to inform future drug discovery projects and vaccine development.


Assuntos
Glicoconjugados/biossíntese , Hexosiltransferases/fisiologia , Ramnose/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Capsídeo/metabolismo , Células Eucarióticas/metabolismo , Flavonoides/metabolismo , Glicoconjugados/química , Glicolipídeos/biossíntese , Glicosilação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Hexosiltransferases/química , Hexosiltransferases/genética , Modelos Moleculares , Antígenos O/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Células Procarióticas/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Virulência
3.
Biochem J ; 478(12): 2385-2397, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34096588

RESUMO

Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.


Assuntos
Bacteriófagos/fisiologia , Carboidratos/fisiologia , Enzimas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Virais/metabolismo , Carboidratos/química , Domínio Catalítico , Parede Celular/química , Parede Celular/metabolismo , Enzimas/genética , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Proteínas Virais/genética
4.
J Biol Chem ; 294(23): 9172-9185, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010825

RESUMO

The 6-deoxy sugar l-rhamnose (l-Rha) is found widely in plant and microbial polysaccharides and natural products. The importance of this and related compounds in host-pathogen interactions often means that l-Rha plays an essential role in many organisms. l-Rha is most commonly biosynthesized as the activated sugar nucleotide uridine 5'-diphospho-ß-l-rhamnose (UDP-ß-l-Rha) or thymidine 5'-diphospho-ß-l-rhamnose (TDP-ß-l-Rha). Enzymes involved in the biosynthesis of these sugar nucleotides have been studied in some detail in bacteria and plants, but the activated form of l-Rha and the corresponding biosynthetic enzymes have yet to be explored in algae. Here, using sugar-nucleotide profiling in two representative algae, Euglena gracilis and the toxin-producing microalga Prymnesium parvum, we show that levels of UDP- and TDP-activated l-Rha differ significantly between these two algal species. Using bioinformatics and biochemical methods, we identified and characterized a fusion of the RmlC and RmlD proteins, two bacteria-like enzymes involved in TDP-ß-l-Rha biosynthesis, from P. parvum Using this new sequence and also others, we explored l-Rha biosynthesis among algae, finding that although most algae contain sequences orthologous to plant-like l-Rha biosynthesis machineries, instances of the RmlC-RmlD fusion protein identified here exist across the Haptophyta and Gymnodiniaceae families of microalgae. On the basis of these findings, we propose potential routes for the evolution of nucleoside diphosphate ß-l-Rha (NDP-ß-l-Rha) pathways among algae.


Assuntos
Proteínas de Algas/metabolismo , Carboidratos Epimerases/metabolismo , Haptófitas/metabolismo , Ramnose/biossíntese , Proteínas de Algas/genética , Carboidratos Epimerases/classificação , Carboidratos Epimerases/genética , Filogenia , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ramnose/química , Simbiose
5.
J Biol Chem ; 294(42): 15237-15256, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31506299

RESUMO

Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-ß-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-ß-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/genética , Hexosiltransferases/genética , Família Multigênica , Filogenia , Polissacarídeos Bacterianos/genética , Ramnose/metabolismo , Streptococcus/classificação , Streptococcus/enzimologia , Streptococcus/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
6.
Mol Microbiol ; 111(4): 951-964, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30600561

RESUMO

Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120-410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria.


Assuntos
Antibacterianos/isolamento & purificação , Hidroliases/metabolismo , Açúcares de Nucleosídeo Difosfato/biossíntese , Racemases e Epimerases/metabolismo , Streptococcus/enzimologia , Nucleotídeos de Timina/biossíntese , Antibacterianos/farmacologia , Vias Biossintéticas , Hidroliases/genética , Concentração Inibidora 50 , Racemases e Epimerases/genética , Streptococcus/efeitos dos fármacos
7.
Nat Chem Biol ; 19(7): 795-796, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37336978
8.
Mol Microbiol ; 98(5): 946-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278404

RESUMO

The sugar nucleotide dTDP-L-rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four-step dTDP-L-rhamnose biosynthesis pathway is catalyzed by dTDP-4-dehydrorhamnose reductases (RmlD). RmlD from the Gram-negative bacterium Salmonella is the only structurally characterized family member and requires metal-dependent homo-dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram-negative and Gram-positive RmlD homologues predicts that enzymes from all Gram-positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn-sequencing and generation of a conditional-expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram-positive bacteria and a subset of Gram-negative bacteria. These results will help future screens for novel inhibitors of dTDP-L-rhamnose biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Streptococcus pyogenes/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/química , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Bactérias Gram-Positivas/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Mutação , Açúcares de Nucleosídeo Difosfato/biossíntese , Estrutura Terciária de Proteína , Ramnose/análogos & derivados , Ramnose/biossíntese , Ramnose/metabolismo , Alinhamento de Sequência , Streptococcus pyogenes/genética , Nucleotídeos de Timina/biossíntese , Nucleotídeos de Timina/metabolismo
9.
J Biol Chem ; 289(33): 23020-23028, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24942743

RESUMO

Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening-compatible novel assay demonstrates that a known inhibitor of fungal CHS also inhibit NodC. A structural model of NodC, on the basis of the recently published BcsA cellulose synthase structure, enabled probing of the catalytic mechanism by mutagenesis, demonstrating the essential roles of the DD and QXXRW catalytic motifs. The NodC membrane topology was mapped, validating the structural model. Together, these approaches give insight into the CHS structure and mechanism and provide a platform for the discovery of inhibitors for this antifungal target.


Assuntos
Proteínas de Bactérias , Quitina Sintase , Quitina , Modelos Biológicos , Modelos Moleculares , Sinorhizobium meliloti/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Quitina/biossíntese , Quitina/química , Quitina Sintase/química , Quitina Sintase/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo
10.
Biochem J ; 457(3): 497-502, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24256146

RESUMO

Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C3 linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Oligopeptídeos/farmacologia , Difosfato de Uridina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Interferometria , Cinética , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia
11.
PLoS One ; 18(2): e0281839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795789

RESUMO

The Fructobacillus genus is a group of obligately fructophilic lactic acid bacteria (FLAB) that requires the use of fructose or another electron acceptor for their growth. In this work, we performed a comparative genomic analysis within the genus Fructobacillus by using 24 available genomes to evaluate genomic and metabolic differences among these organisms. In the genome of these strains, which varies between 1.15- and 1.75-Mbp, nineteen intact prophage regions, and seven complete CRISPR-Cas type II systems were found. Phylogenetic analyses located the studied genomes in two different clades. A pangenome analysis and a functional classification of their genes revealed that genomes of the first clade presented fewer genes involved in the synthesis of amino acids and other nitrogen compounds. Moreover, the presence of genes strictly related to the use of fructose and electron acceptors was variable within the genus, although these variations were not always related to the phylogeny.


Assuntos
Lactobacillales , Leuconostocaceae , Frutose/metabolismo , Filogenia , Leuconostocaceae/genética , Leuconostocaceae/metabolismo , Lactobacillales/genética , Genômica
12.
PLoS One ; 18(6): e0286540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267309

RESUMO

Bacteria produce a variety of polysaccharides with functional roles in cell surface coating, surface and host interactions, and biofilms. We have identified an 'Orphan' bacterial cellulose synthase catalytic subunit (BcsA)-like protein found in four model pseudomonads, P. aeruginosa PA01, P. fluorescens SBW25, P. putida KT2440 and P. syringae pv. tomato DC3000. Pairwise alignments indicated that the Orphan and BcsA proteins shared less than 41% sequence identity suggesting they may not have the same structural folds or function. We identified 112 Orphans among soil and plant-associated pseudomonads as well as in phytopathogenic and human opportunistic pathogenic strains. The wide distribution of these highly conserved proteins suggest they form a novel family of synthases producing a different polysaccharide. In silico analysis, including sequence comparisons, secondary structure and topology predictions, and protein structural modelling, revealed a two-domain transmembrane ovoid-like structure for the Orphan protein with a periplasmic glycosyl hydrolase family GH17 domain linked via a transmembrane region to a cytoplasmic glycosyltransferase family GT2 domain. We suggest the GT2 domain synthesises ß-(1,3)-glucan that is transferred to the GH17 domain where it is cleaved and cyclised to produce cyclic-ß-(1,3)-glucan (CßG). Our structural models are consistent with enzymatic characterisation and recent molecular simulations of the PaPA01 and PpKT2440 GH17 domains. It also provides a functional explanation linking PaPAK and PaPA14 Orphan (also known as NdvB) transposon mutants with CßG production and biofilm-associated antibiotic resistance. Importantly, cyclic glucans are also involved in osmoregulation, plant infection and induced systemic suppression, and our findings suggest this novel family of CßG synthases may provide similar range of adaptive responses for pseudomonads.


Assuntos
Polissacarídeos , beta-Glucanas , Humanos , Polissacarídeos/metabolismo , Glucanos , Estrutura Secundária de Proteína , Biofilmes , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , beta-Glucanas/metabolismo
13.
NPJ Vaccines ; 8(1): 48, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977677

RESUMO

The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.

14.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865097

RESUMO

The Bacillus subtilis extracellular biofilm matrix includes an exopolysaccharide that is critical for the architecture and function of the community. To date, our understanding of the biosynthetic machinery and the molecular composition of the exopolysaccharide of B. subtilis remains unclear and incomplete. This report presents synergistic biochemical and genetic studies built from a foundation of comparative sequence analyses targeted at elucidating the activities of the first two membrane-committed steps in the exopolysaccharide biosynthetic pathway. By taking this approach, we determined the nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in the B. subtilis biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first phosphoglycosyl transferase step using UDP-di- N -acetyl bacillosamine as phospho-sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in the pathway that utilizes the product of EpsL as an acceptor substrate and UDP- N -acetyl glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides at the reducing end of the growing exopolysaccharide unit. In doing so we provide the first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a Gram-positive bacterium. IMPORTANCE: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide synthesis pathway. Together our studies and approaches provide the foundation for the sequential characterization of the steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenol diphosphate-linked glycan substrates.

15.
mBio ; 14(5): e0094823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650625

RESUMO

IMPORTANCE: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.


Assuntos
Bacillus subtilis , Biofilmes , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 1019-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22868768

RESUMO

Glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) produces GlcNAc-6-phosphate from GlcN-6-phosphate and acetyl coenzyme A. Early mercury-labelling experiments implicated a conserved cysteine in the reaction mechanism, whereas recent structural data appear to support a mechanism in which this cysteine plays no role. Here, two crystal structures of Caenorhabditis elegans GNA1 are reported, revealing an unusual covalent complex between this cysteine and the coenzyme A product. Mass-spectrometric and reduction studies showed that this inactive covalent complex can be reactivated through reduction, yet mutagenesis of the cysteine supports a previously reported bi-bi mechanism. The data unify the apparently contradictory earlier reports on the role of a cysteine in the GNA1 active site.


Assuntos
Caenorhabditis elegans/enzimologia , Coenzima A/química , Glucosamina 6-Fosfato N-Acetiltransferase/química , Animais , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X/métodos , Cisteína/química , Cinética , Espectrometria de Massas/métodos , Modelos Moleculares , Conformação Molecular , Mutação , Oxigênio/química , Ligação Proteica
17.
Elife ; 112022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394422

RESUMO

Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal ß-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed its function as an inverting ß-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed similarities of Agl24 to the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which are catalyzing the same or a similar reaction, respectively. Phylogenetic analysis of Alg14/13 homologs indicates that they are ancient in Eukaryotes, either as a lateral transfer or inherited through eukaryogenesis.


Assuntos
Archaea , Eucariotos , Archaea/genética , Dissacarídeos , Filogenia , Polissacarídeos
18.
Amino Acids ; 40(3): 781-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20640461

RESUMO

Protein glycosylation on serine/threonine residues with N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible and abundant post-translational modification. It is thought to regulate many cellular processes and there are examples of interplay between O-GlcNAc and protein phosphorylation. In metazoa, a single, highly conserved and essential gene encodes the O-GlcNAc transferase (OGT) that transfers GlcNAc onto substrate proteins using UDP-GlcNAc as the sugar donor. Specific inhibitors of human OGT would be useful tools to probe the role of this post-translational modification in regulating processes in the living cell. Here, we describe the synthesis of novel UDP-GlcNAc/UDP analogues and evaluate their inhibitory properties and structural binding modes in vitro alongside alloxan, a previously reported weak OGT inhibitor. While the novel analogues are not active on living cells, they inhibit the enzyme in the micromolar range and together with the structural data provide useful templates for further optimisation.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/química , Acetilglucosamina/metabolismo , Inibidores Enzimáticos/síntese química , Glicosilação , Humanos , Cinética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Proteínas/metabolismo , Especificidade por Substrato
19.
Curr Opin Struct Biol ; 18(5): 551-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18822376

RESUMO

Protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAc) is a reversible post-translational modification of serines/threonines on metazoan proteins and occurring with similar time scales, dynamics and stoichiometry as protein phosphorylation. Levels of this modification are regulated by two enzymes-O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Although the biochemistry of these enzymes and functional implications of O-GlcNAc have been studied extensively, until recently the structures and molecular mechanisms of OGT/OGA were not understood. This review covers a body of recent work that has led to an understanding of the structure of OGA, its catalytic mechanism and the development of a plethora of different inhibitors that are finding their use in cell biological studies towards the functional implications of O-GlcNAc. Furthermore, the very recent structure determination of a bacterial OGT orthologue has given the first insights into the contribution of the tetratricopeptide repeats (TPRs) to the active site and the role of some residues in catalysis and substrate binding.


Assuntos
Acetilglucosamina/química , Acetilglucosamina/metabolismo , Acilação , Sítios de Ligação , Configuração de Carboidratos , Glicosilação , Hexosaminidase A/química , Hexosaminidase A/metabolismo , Hexosaminidase B/química , Hexosaminidase B/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional
20.
R Soc Open Sci ; 8(3): 201991, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33959354

RESUMO

Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a Gram-positive human-exclusive pathogen, responsible for more than 500 000 deaths annually worldwide. Upon infection, GAS commonly triggers mild symptoms such as pharyngitis, pyoderma and fever. However, recurrent infections or prolonged exposure to GAS might lead to life-threatening conditions. Necrotizing fasciitis, streptococcal toxic shock syndrome and post-immune mediated diseases, such as poststreptococcal glomerulonephritis, acute rheumatic fever and rheumatic heart disease, contribute to very high mortality rates in non-industrialized countries. Though an initial reduction in GAS infections was observed in high-income countries, global outbreaks of GAS, causing rheumatic fever and acute poststreptococcal glomerulonephritis, have been reported over the last decade. At the same time, our understanding of GAS pathogenesis and transmission has vastly increased, with detailed insight into the various stages of infection, beginning with adhesion, colonization and evasion of the host immune system. Despite deeper knowledge of the impact of GAS on the human body, the development of a successful vaccine for prophylaxis of GAS remains outstanding. In this review, we discuss the challenges involved in identifying a universal GAS vaccine and describe several potential vaccine candidates that we believe warrant pursuit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa