Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(7): 880-892, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099917

RESUMO

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Assuntos
Autoimunidade , Encéfalo/imunologia , Linhagem da Célula , Encefalomielite Autoimune Experimental/imunologia , Intestinos/imunologia , Pele/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Autoimunidade/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sinalização do Cálcio , Líquido Cefalorraquidiano/imunologia , Líquido Cefalorraquidiano/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Cloridrato de Fingolimode/farmacologia , Perfilação da Expressão Gênica , Genes Codificadores dos Receptores de Linfócitos T , Células HEK293 , Humanos , Imunossupressores/farmacologia , Intestinos/efeitos dos fármacos , Microscopia Intravital , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fenótipo , Estudos Prospectivos , RNA-Seq , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Análise de Célula Única , Pele/efeitos dos fármacos , Pele/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/transplante , Transcriptoma
2.
Blood ; 143(14): 1365-1378, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277625

RESUMO

ABSTRACT: Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell-reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia. Single-cell sequencing and immunophenotyping revealed oligoclonal expansion and effector differentiation of CD8+ T-cell compartments. We reexpressed 28 dominant T-cell receptors (TCRs) of 9 patients in reporter cell lines to determine reactivity with (1) in vitro-expanded CD34+ bone marrow, (2) CD34- bone marrow, or (3) peptide pools covering immunodominant epitopes of highly prevalent viruses. Besides 5 cytomegalovirus-reactive TCRs, we identified 3 TCRs that recognized antigen presented on hematopoietic progenitor cells. T cells transduced with these TCRs eliminated hematopoietic progenitor cells of the respective patients in vitro. One progenitor cell-reactive TCR (11A5) also recognized an epitope of the Epstein-Barr virus-derived latent membrane protein 1 (LMP1) presented on HLA-A∗02:01. We identified 2 LMP1-related mimotopes within the human proteome as activating targets of TCR 11A5, providing proof of concept that molecular mimicry of viral and self-epitopes can drive T cell-mediated elimination of hematopoietic progenitor cells in aplastic anemia.


Assuntos
Anemia Aplástica , Infecções por Vírus Epstein-Barr , Humanos , Mimetismo Molecular , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Células-Tronco Hematopoéticas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
J Autoimmun ; 146: 103234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663202

RESUMO

Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.


Assuntos
Narcolepsia , Análise de Célula Única , Transcriptoma , Humanos , Narcolepsia/genética , Narcolepsia/líquido cefalorraquidiano , Masculino , Feminino , Adulto , Orexinas/líquido cefalorraquidiano , Orexinas/genética , Perfilação da Expressão Gênica , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Cadeias beta de HLA-DQ/genética , Pessoa de Meia-Idade , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619082

RESUMO

Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.


Assuntos
Antígenos de Neoplasias/imunologia , Autoanticorpos/imunologia , Reações Cruzadas/imunologia , Suscetibilidade a Doenças , Encefalite/etiologia , Receptores de GABA-A/imunologia , Autoantígenos/imunologia , Doenças Autoimunes do Sistema Nervoso/etiologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Suscetibilidade a Doenças/imunologia , Encefalite/metabolismo , Encefalite/patologia , Humanos , Células Piramidais/imunologia , Células Piramidais/metabolismo
5.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695896

RESUMO

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Assuntos
Células Produtoras de Anticorpos , Autoantígenos , Camundongos , Animais , Linfócitos B , Vírus da Coriomeningite Linfocítica , Encéfalo
6.
J Immunol ; 207(9): 2235-2244, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580106

RESUMO

Autoimmune diseases develop when autoantigens activate previously quiescent self-reactive lymphocytes. Gene-gene interaction between certain HLA class I risk alleles and variants of the endoplasmic reticulum aminopeptidase ERAP1 controls the risk for common immune-mediated diseases, including psoriasis, ankylosing spondylitis, and Behçet disease. The functional mechanisms underlying this statistical association are unknown. In psoriasis, HLA-C*06:02 mediates an autoimmune response against melanocytes by autoantigen presentation. Using various genetically modified cell lines together with an autoreactive psoriatic TCR in a TCR activation assay, we demonstrate in this study that in psoriasis, ERAP1 generates the causative melanocyte autoantigen through trimming N-terminal elongated peptide precursors to the appropriate length for presentation by HLA-C*06:02. An ERAP1 risk haplotype for psoriasis produced the autoantigen much more efficiently and increased HLA-C expression and stimulation of the psoriatic TCR by melanocytes significantly more than a protective haplotype. Compared with the overall HLA class I molecules, cell surface expression of HLA-C decreased significantly more upon ERAP1 knockout. The combined upregulation of ERAP1 and HLA-C on melanocytes in psoriasis lesions emphasizes the pathogenic relevance of their interaction in patients. We conclude that in psoriasis pathogenesis, the increased generation of an ERAP1-dependent autoantigen by an ERAP1 risk haplotype enhances the likelihood that autoantigen presentation by HLA-C*06:02 will exceed the threshold for activation of potentially autoreactive T cells, thereby triggering CD8+ T cell-mediated autoimmune disease. These data identify ERAP1 function as a central checkpoint and promising therapeutic target in psoriasis and possibly other HLA class I-associated diseases with a similar genetic predisposition.


Assuntos
Aminopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Antígenos HLA-C/metabolismo , Melanócitos/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Psoríase/imunologia , Aminopeptidases/genética , Apresentação de Antígeno , Autoantígenos/imunologia , Autoimunidade , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Células HEK293 , Antígenos HLA-C/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética , Terapia de Alvo Molecular , Psoríase/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Risco
7.
J Autoimmun ; 133: 102901, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115212

RESUMO

Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR ß-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αß-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.


Assuntos
Linfócitos T CD8-Positivos , Antígenos HLA-B
8.
Cytotherapy ; 24(8): 818-826, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35525797

RESUMO

BACKGROUND AND AIMS: Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS: Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαß-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS: The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Epitopos , Infecções por Vírus Epstein-Barr/terapia , Antígenos HLA-A , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Complemento 3d , Linfócitos T
9.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409067

RESUMO

Autoimmune encephalitis associated with antibodies (Abs) against α1, ß3, and γ2 subunits of γ-aminobutyric acid receptor A (GABAAR) represents a severe form of encephalitis with refractory seizures and status epilepticus. Reduction in inhibitory GABAergic synaptic activity is linked to dysfunction of neuronal networks, hyperexcitability, and seizures. The aim in this study was to investigate the direct pathogenic effect of a recombinant GABAAR autoantibody (rAb-IP2), derived from the cerebrospinal fluid (CSF) of a patient with autoimmune GABAAR encephalitis, on hippocampal CA1 and CA3 networks. Acute brain slices from C57BL/6 mice were incubated with rAb-IP2. The spontaneous synaptic GABAergic transmission was measured using electrophysiological recordings in voltage-clamp mode. The GABAAR autoantibody rAb-IP2 reduced inhibitory postsynaptic signaling in the hippocampal CA1 pyramidal neurons with regard to the number of spontaneous inhibitory postsynaptic currents (sIPSCs) but did not affect their amplitude. In the hippocampal CA3 network, decreased number and amplitude of sIPSCs were detected, leading to decreased GABAergic synaptic transmission. Immunohistochemical staining confirmed the rAb-IP2 bound to hippocampal tissue. These findings suggest that GABAAR autoantibodies exert direct functional effects on both hippocampal CA1 and CA3 pyramidal neurons and play a crucial role in seizure generation in GABAAR autoimmune encephalitis.


Assuntos
Encefalite , Receptores de GABA-A , Animais , Autoanticorpos/metabolismo , Encefalite/metabolismo , Doença de Hashimoto , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
10.
Acta Neuropathol ; 141(1): 67-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242149

RESUMO

Aim of our study was to identify the target auto-antigen in the central nervous system recognized by the immune system of a unique patient, who died more than 60 years ago from a disease with pathological changes closely resembling multiple sclerosis (MS), following a misguided immunization with lyophilized calf brain tissue. Total mRNA was isolated from formaldehyde fixed and paraffin embedded archival brain tissue containing chronic active inflammatory demyelinating lesions with inflammatory infiltrates rich in B-lymphocytes and plasma cells. Analysis of the transcriptome by next generation sequencing and reconstruction of the dominant antibody by bioinformatic tools revealed the presence of one strongly expanded B-cell clone, producing an autoantibody against a conformational epitope of myelin oligodendrocytes glycoprotein (MOG), similar to that recognized by the well characterized monoclonal anti-MOG antibody 8-18C5. The reconstructed antibody induced demyelination after systemic or intrathecal injection into animals with T-cell mediated encephalomyelitis. Our study suggests that immunization with bovine brain tissue in humans may-in a small subset of patients-induce a disease with an intermediate clinical and pathological presentation between MS and MOG-antibody associated inflammatory demyelinating disease (MOGAD).


Assuntos
Alergia e Imunologia , Arqueologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Encefalomielite/imunologia , Encefalomielite/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neurologia , Adulto , Animais , Doenças Autoimunes/genética , Linfócitos B/imunologia , Biologia Computacional , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Encefalomielite/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Esclerose Múltipla/genética , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Inclusão em Parafina , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Fixação de Tecidos , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 115(9): 2168-2173, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440397

RESUMO

HLA associations, T cell receptor (TCR) repertoire bias, and sex bias have independently been shown for many diseases. While some immunological differences between the sexes have been described, they do not fully explain bias in men toward many infections/cancers, and toward women in autoimmunity. Next-generation TCR variable beta chain (TCRBV) immunosequencing of 824 individuals was evaluated in a multiparametric analysis including HLA-A -B/MHC class I background, TCRBV usage, sex, age, ethnicity, and TCRBV selection/expansion dynamics. We found that HLA-associated shaping of TCRBV usage differed between the sexes. Furthermore, certain TCRBVs were selected and expanded in unison. Correlations between these TCRBV relationships and biochemical similarities in HLA-binding positions were different in CD8 T cells of patients with autoimmune diseases (multiple sclerosis and rheumatoid arthritis) compared with healthy controls. Within patients, men showed higher TCRBV relationship Spearman's rhos in relation to HLA-binding position similarities compared with women. In line with this, CD8 T cells of men with autoimmune diseases also showed higher degrees of TCRBV perturbation compared with women. Concerted selection and expansion of CD8 T cells in patients with autoimmune diseases, but especially in men, appears to be less dependent on high HLA-binding similarity than in CD4 T cells. These findings are consistent with studies attributing autoimmunity to processes of epitope spreading and expansion of low-avidity T cell clones and may have further implications for the interpretation of pathogenic mechanisms of infectious and autoimmune diseases with known HLA associations. Reanalysis of some HLA association studies, separating the data by sex, could be informative.


Assuntos
Imunidade Adaptativa/genética , Imunidade Adaptativa/fisiologia , Genes MHC Classe I/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais
12.
J Autoimmun ; 100: 1-6, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948158

RESUMO

Convergent evidence points to the involvement of T cells in the pathogenesis of narcolepsy type 1 (NT1). Here, we hypothesized that expanded disease-specific T cell clones could be detected in the blood of NT1 patients. We compared the TCR repertoire of circulating antigen-experienced CD4+ and CD8+ T cells from 13 recently diagnosed NT1 patients and 11 age-, sex-, and HLA-DQB1*06:02-matched healthy controls. We detected a bias in the usage of TRAV3 and TRAV8 families, with public CDR3α motifs only present in CD4+ T cells from patients with NT1. These findings may offer a unique tool to identify disease-relevant antigens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Narcolepsia , Receptores de Antígenos de Linfócitos T , Adolescente , Adulto , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Cadeias beta de HLA-DQ/genética , Cadeias beta de HLA-DQ/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Narcolepsia/genética , Narcolepsia/imunologia , Narcolepsia/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
13.
Ann Neurol ; 84(2): 315-328, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30014603

RESUMO

OBJECTIVE: Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with inflammatory demyelinating diseases of the central nervous system (CNS). We analyzed their pathogenic activity by affinity-purifying these antibodies (Abs) from patients and transferring them to experimental animals. METHODS: Patients with Abs to MOG were identified by cell-based assay. We determined the cross-reactivity to rodent MOG and the recognized MOG epitopes. We produced the correctly folded extracellular domain of MOG and affinity-purified MOG-specific Abs from the blood of patients. These purified Abs were used to stain CNS tissue and transferred in 2 models of experimental autoimmune encephalomyelitis. Animals were analyzed histopathologically. RESULTS: We identified 17 patients with MOG Abs from our outpatient clinic and selected 2 with a cross-reactivity to rodent MOG; both had recurrent optic neuritis. Affinity-purified Abs recognized MOG on transfected cells and stained myelin in tissue sections. The Abs from the 2 patients recognized different epitopes on MOG, the CC' and the FG loop. In both patients, these Abs persisted during our observation period of 2 to 3 years. The anti-MOG Abs from both patients were pathogenic upon intrathecal injection in 2 different rat models. Together with cognate MOG-specific T cells, these Abs enhanced T-cell infiltration; together with myelin basic protein-specific T cells, they induced demyelination associated with deposition of C9neo, resembling a multiple sclerosis type II pathology. INTERPRETATION: MOG-specific Abs affinity purified from patients with inflammatory demyelinating disease induce pathological changes in vivo upon cotransfer with myelin-reactive T cells, suggesting that these Abs are similarly pathogenic in patients. Ann Neurol 2018;84:315-328.


Assuntos
Autoanticorpos/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Glicoproteína Mielina-Oligodendrócito/sangue , Adulto , Idoso , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Cobaias , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 113(28): 7864-9, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27325759

RESUMO

Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases.


Assuntos
Autoantígenos/imunologia , Esclerose Múltipla/imunologia , Bandas Oligoclonais/imunologia , Borrelia/imunologia , Células HEK293 , Humanos , Neuroborreliose de Lyme/imunologia
15.
Proc Natl Acad Sci U S A ; 113(21): E2973-82, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162345

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood-brain barrier, CD56(bright) NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4ß1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4(+) T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4(+) T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor's ligand CD155 on CD4(+) T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4(+) T cells and the cytolytic activity of NK cells.


Assuntos
Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Esclerose Múltipla/imunologia , Receptores de Interleucina-2/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Barreira Hematoencefálica/patologia , Linfócitos T CD4-Positivos/patologia , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Células K562 , Células Matadoras Naturais/patologia , Masculino , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Natalizumab/administração & dosagem , Receptores Virais/imunologia
16.
Ann Neurol ; 80(2): 294-300, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27351142

RESUMO

We investigated a patient who developed multiple sclerosis (MS) during treatment with the CTLA4-blocking antibody ipilimumab for metastatic melanoma. Initially he showed subclinical magnetic resonance imaging (MRI) changes (radiologically isolated syndrome). Two courses of ipilimumab were each followed by a clinical episode of MS, 1 of which was accompanied by a massive increase of MRI activity. Brain biopsy confirmed active, T-cell type MS. Quantitative next generation sequencing of T-cell receptor genes revealed distinct oligoclonal CD4(+) and CD8(+) T-cell repertoires in the primary melanoma and cerebrospinal fluid. Our results pinpoint the coinhibitory molecule CTLA4 as an immunological checkpoint and therapeutic target in MS. Ann Neurol 2016;80:294-300.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Antígeno CTLA-4/imunologia , Esclerose Múltipla/imunologia , Adulto , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Líquido Cefalorraquidiano/citologia , Humanos , Ipilimumab , Masculino , Melanoma/líquido cefalorraquidiano , Melanoma/tratamento farmacológico , Melanoma/imunologia , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/induzido quimicamente
19.
J Neuroinflammation ; 12: 46, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25889963

RESUMO

BACKGROUND: Antibodies against myelin oligodendrocyte glycoprotein (MOG) have been identified in a subgroup of pediatric patients with inflammatory demyelinating disease of the central nervous system (CNS) and in some patients with neuromyelitis optica spectrum disorder (NMOSD). The aim of this study was to examine the frequency, clinical features, and long-term disease course of patients with anti-MOG antibodies in a European cohort of NMO/NMOSD. FINDINGS: Sera from 48 patients with NMO/NMOSD and 48 patients with relapsing-remitting multiple sclerosis (RR-MS) were tested for anti-aquaporin-4 (AQP4) and anti-MOG antibodies with a cell-based assay. Anti-MOG antibodies were found in 4/17 patients with AQP4-seronegative NMO/NMOSD, but in none of the AQP4-seropositive NMO/NMOSD (n = 31) or RR-MS patients (n = 48). MOG-seropositive patients tended towards younger disease onset with a higher percentage of patients with pediatric (<18 years) disease onset (MOG+, AQP4+, MOG-/AQP4-: 2/4, 3/31, 0/13). MOG-seropositive patients presented more often with positive oligoclonal bands (OCBs) (3/3, 5/29, 1/13) and brain magnetic resonance imaging (MRI) lesions during disease course (2/4, 5/31, 1/13). Notably, the mean time to the second attack affecting a different CNS region was longer in the anti-MOG antibody-positive group (11.3, 3.2, 3.4 years). CONCLUSIONS: MOG-seropositive patients show a diverse clinical phenotype with clinical features resembling both NMO (attacks mainly confined to the spinal cord and optic nerves) and MS with an opticospinal presentation (positive OCBs, brain lesions). Anti-MOG antibodies can serve as a diagnostic and maybe prognostic tool in patients with an AQP4-seronegative NMO phenotype and should be tested in those patients.


Assuntos
Autoanticorpos/sangue , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/sangue , Adulto , Idoso , Aquaporina 4/imunologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Estudos Retrospectivos , Adulto Jovem
20.
J Immunol ; 191(7): 3594-604, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24014878

RESUMO

Autoantibodies targeting conformationally intact myelin oligodendrocyte glycoprotein (MOG) are found in different inflammatory diseases of the CNS, but their antigenic epitopes have not been mapped. We expressed mutants of MOG on human HeLa cells and analyzed sera from 111 patients (104 children, 7 adults) who recognized cell-bound human MOG, but had different diseases, including acute disseminated encephalomyelitis (ADEM), one episode of transverse myelitis or optic neuritis, multiple sclerosis (MS), anti-aquaporin-4 (AQP4)-negative neuromyelitis optica (NMO), and chronic relapsing inflammatory optic neuritis (CRION). We obtained insight into the recognition of epitopes in 98 patients. All epitopes identified were located at loops connecting the ß strands of MOG. The most frequently recognized MOG epitope was revealed by the P42S mutation positioned in the CC'-loop. Overall, we distinguished seven epitope patterns, including the one mainly recognized by mouse mAbs. In half of the patients, the anti-MOG response was directed to a single epitope. The epitope specificity was not linked to certain disease entities. Longitudinal analysis of 11 patients for up to 5 y indicated constant epitope recognition without evidence for intramolecular epitope spreading. Patients who rapidly lost their anti-MOG IgG still generated a long-lasting IgG response to vaccines, indicating that their loss of anti-MOG reactivity did not reflect a general lack of capacity for long-standing IgG responses. The majority of human anti-MOG Abs did not recognize rodent MOG, which has implications for animal studies. Our findings might assist in future detection of potential mimotopes and pave the way to Ag-specific depletion.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Epitopos/química , Epitopos/imunologia , Inflamação/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Doenças do Sistema Nervoso Central/genética , Criança , Pré-Escolar , Epitopos/metabolismo , Feminino , Glicosilação , Humanos , Imunoglobulina G/imunologia , Lactente , Inflamação/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Ligação Proteica/imunologia , Conformação Proteica , Estabilidade Proteica , Alinhamento de Sequência , Transfecção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa