Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 122: 103897, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454078

RESUMO

INTRODUCTION: Existing methods to make data Findable, Accessible, Interoperable, and Reusable (FAIR) are usually carried out in a post hoc manner: after the research project is conducted and data are collected. De-novo FAIRification, on the other hand, incorporates the FAIRification steps in the process of a research project. In medical research, data is often collected and stored via electronic Case Report Forms (eCRFs) in Electronic Data Capture (EDC) systems. By implementing a de novo FAIRification process in such a system, the reusability and, thus, scalability of FAIRification across research projects can be greatly improved. In this study, we developed and implemented a novel method for de novo FAIRification via an EDC system. We evaluated our method by applying it to the Registry of Vascular Anomalies (VASCA). METHODS: Our EDC and research project independent method ensures that eCRF data entered into an EDC system can be transformed into machine-readable, FAIR data using a semantic data model (a canonical representation of the data, based on ontology concepts and semantic web standards) and mappings from the model to questions on the eCRF. The FAIRified data are stored in a triple store and can, together with associated metadata, be accessed and queried through a FAIR Data Point. The method was implemented in Castor EDC, an EDC system, through a data transformation application. The FAIRness of the output of the method, the FAIRified data and metadata, was evaluated using the FAIR Evaluation Services. RESULTS: We successfully applied our FAIRification method to the VASCA registry. Data entered on eCRFs is automatically transformed into machine-readable data and can be accessed and queried using SPARQL queries in the FAIR Data Point. Twenty-one FAIR Evaluator tests pass and one test regarding the metadata persistence policy fails, since this policy is not in place yet. CONCLUSION: In this study, we developed a novel method for de novo FAIRification via an EDC system. Its application in the VASCA registry and the automated FAIR evaluation show that the method can be used to make clinical research data FAIR when they are entered in an eCRF without any intervention from data management and data entry personnel. Due to the generic approach and developed tooling, we believe that our method can be used in other registries and clinical trials as well.


Assuntos
Pesquisa Biomédica , Metadados , Gerenciamento de Dados , Eletrônica , Sistema de Registros
2.
JMIR Med Inform ; 10(5): e32158, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594066

RESUMO

BACKGROUND: With hundreds of registries across Europe, rare diseases (RDs) suffer from fragmented knowledge, expertise, and research. A joint initiative of the European Commission Joint Research Center and its European Platform on Rare Disease Registration (EU RD Platform), the European Reference Networks (ERNs), and the European Joint Programme on Rare Diseases (EJP RD) was launched in 2020. The purpose was to extend the set of common data elements (CDEs) for RD registration by defining domain-specific CDEs (DCDEs). OBJECTIVE: This study aims to introduce and assess the feasibility of the concept of a joint initiative that unites the efforts of the European Platform on Rare Disease Registration Platform, ERNs, and European Joint Programme on Rare Diseases toward extending RD CDEs, aiming to improve the semantic interoperability of RD registries and enhance the quality of RD research. METHODS: A joint conference was conducted in December 2020. All 24 ERNs were invited. Before the conference, a survey was communicated to all ERNs, proposing 18 medical domains and requesting them to identify highly relevant choices. After the conference, a 3-phase plan for defining and modeling DCDEs was drafted. Expected outcomes included harmonized lists of DCDEs. RESULTS: All ERNs attended the conference. The survey results indicated that genetic, congenital, pediatric, and cancer were the most overlapping domains. Accordingly, the proposed list was reorganized into 10 domain groups and recommunicated to all ERNs, aiming at a smaller number of domains. CONCLUSIONS: The approach described for defining DCDEs appears to be feasible. However, it remains dynamic and should be repeated regularly based on arising research needs.

3.
Orphanet J Rare Dis ; 17(1): 436, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517834

RESUMO

INTRODUCTION: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR ('FAIRification') differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. RESULTS: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs' registries were collected and categorised into "training" (31), "community" (9), "modelling" (12), "implementation" (26), and "legal" (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were "training" (15) and "implementation" (9), followed by "community" (7), and then "modelling" (5) and "legal" (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the "training" challenges, which ranged from less-technical "coffee-rounds" to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the "implementation" challenges. CONCLUSION: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries.


Assuntos
Doenças Raras , Software , Humanos , Europa (Continente) , Doenças Raras/terapia , Sistema de Registros
4.
J Biomed Semantics ; 13(1): 9, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292119

RESUMO

BACKGROUND: The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. RESULTS: Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. CONCLUSIONS: Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them.


Assuntos
Elementos de Dados Comuns , Doenças Raras , Humanos , Sistema de Registros , Semântica , Fluxo de Trabalho
5.
Orphanet J Rare Dis ; 16(1): 376, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34481493

RESUMO

BACKGROUND: Patient data registries that are FAIR-Findable, Accessible, Interoperable, and Reusable for humans and computers-facilitate research across multiple resources. This is particularly relevant to rare diseases, where data often are scarce and scattered. Specific research questions can be asked across FAIR rare disease registries and other FAIR resources without physically combining the data. Further, FAIR implies well-defined, transparent access conditions, which supports making sensitive data as open as possible and as closed as necessary. RESULTS: We successfully developed and implemented a process of making a rare disease registry for vascular anomalies FAIR from its conception-de novo. Here, we describe the five phases of this process in detail: (i) pre-FAIRification, (ii) facilitating FAIRification, (iii) data collection, (iv) generating FAIR data in real-time, and (v) using FAIR data. This includes the creation of an electronic case report form and a semantic data model of the elements to be collected (in this case: the "Set of Common Data Elements for Rare Disease Registration" released by the European Commission), and the technical implementation of automatic, real-time data FAIRification in an Electronic Data Capture system. Further, we describe how we contribute to the four facets of FAIR, and how our FAIRification process can be reused by other registries. CONCLUSIONS: In conclusion, a detailed de novo FAIRification process of a registry for vascular anomalies is described. To a large extent, the process may be reused by other rare disease registries, and we envision this work to be a substantial contribution to an ecosystem of FAIR rare disease resources.


Assuntos
Ecossistema , Doenças Raras , Humanos , Doenças Raras/epidemiologia , Sistema de Registros
6.
Stud Health Technol Inform ; 271: 115-116, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32578552

RESUMO

BACKGROUND: Connecting currently existing, heterogeneous rare disease (RD) registries would greatly facilitate epidemiological and clinical research. To increase their interoperability, the European Union developed a set of Common Data Elements (CDEs) for RD registries. OBJECTIVES: To implement the CDEs and the FAIR data principles in the Registry of Vascular Anomalies (VASCA). METHODS: We created a semantic model for the CDE and transformed this into a Resource Description Framework (RDF) template. The electronic case report forms (eCRF) were mapped to the RDF template and published in a FAIR Data Point (FDP). RESULTS: The FAIR VASCA registry was successfully implemented using Castor EDC (Electronic Data Capture) software. CONCLUSION: FAIR technology allows researchers to query and combine data from different registries in real-time.


Assuntos
Elementos de Dados Comuns , Sistema de Registros , Software , Humanos , Doenças Raras , Semântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa