Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 179(2): 340-354, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585078

RESUMO

The conversion of force into an electrical cellular signal is mediated by the opening of different types of mechanosensitive ion channels (MSCs), including TREK/TRAAK K2P channels, Piezo1/2, TMEM63/OSCA, and TMC1/2. Mechanoelectrical transduction plays a key role in hearing, balance, touch, and proprioception and is also implicated in the autonomic regulation of blood pressure and breathing. Thus, dysfunction of MSCs is associated with a variety of inherited and acquired disease states. Significant progress has recently been made in identifying these channels, solving their structure, and understanding the gating of both hyperpolarizing and depolarizing MSCs. Besides prototypical activation by membrane tension, additional gating mechanisms involving channel curvature and/or tethered elements are at play.

2.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38383065

RESUMO

MOTIVATION: Popular shape-based alignment methods handle molecular flexibility by utilizing conformational ensembles to select the most fitted conformer. However, the initial conformer library generation step is computationally intensive and limiting to the overall alignment process. In this work, we describe a method to perform flexible alignment of two molecular shapes by optimizing the 3D conformation. SENSAAS-Flex, an add-on to the SENSAAS tool, is able to proceed from a limited set of initial conformers through an iterative process where additional conformational optimizations are made at the substructure level and constrained by the target shape. RESULTS: In self- and cross-alignment experiments, SENSAAS-Flex is able to reproduce the crystal structure geometry of ligands of the AstraZeneca Molecule Overlay Test set and PDBbind refined dataset. Our study shows that the point-based representation of molecular surfaces is appropriate in terms of shape constraint to sample the conformational space and perform flexible molecular alignments. AVAILABILITY AND IMPLEMENTATION: The documentation and source code are available at https://chemoinfo.ipmc.cnrs.fr/Sensaas-flex/sensaas-flex-main.tar.gz.


Assuntos
Algoritmos , Software , Conformação Molecular , Ligantes
3.
Cell Mol Life Sci ; 80(5): 124, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071200

RESUMO

An inherited gain-of-function variant (E756del) in the mechanosensitive cationic channel PIEZO1 was shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. Yoda1 causes an increase in intracellular calcium associated with rapid echinocytosis that inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. Notably, Yoda1 treatment significantly decreases merozoite attachment and subsequent RBC deformation. Intracellular Na+/K+ imbalance is unrelated to the mechanism of protection, although delayed RBC dehydration observed in the standard parasite culture medium RPMI/albumax further enhances the resistance to malaria conferred by Yoda1. The chemically unrelated Jedi2 PIEZO1 activator similarly causes echinocytosis and RBC dehydration associated with resistance to malaria invasion. Spiky outward membrane projections are anticipated to reduce the effective surface area required for both merozoite attachment and internalization upon pharmacological activation of PIEZO1. Globally, our findings indicate that the loss of the typical biconcave discoid shape of RBCs, together with an altered optimal surface to volume ratio, induced by PIEZO1 pharmacological activation prevent efficient P. falciparum invasion.


Assuntos
Malária , Parasitos , Animais , Humanos , Plasmodium falciparum , Desidratação/metabolismo , Eritrócitos/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
4.
Nature ; 490(7421): 552-5, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23034652

RESUMO

Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/farmacologia , Venenos Elapídicos/farmacologia , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/classificação , Canais Iônicos Sensíveis a Ácido/genética , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Tolerância a Medicamentos , Venenos Elapídicos/administração & dosagem , Venenos Elapídicos/química , Venenos Elapídicos/uso terapêutico , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Morfina/efeitos adversos , Morfina/farmacologia , Naloxona/farmacologia , Nociceptores/química , Nociceptores/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Dor/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Insuficiência Respiratória/induzido quimicamente , Xenopus laevis
5.
J Biol Chem ; 291(6): 2616-29, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26680001

RESUMO

Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Venenos Elapídicos , Peptídeos , Canais Iônicos Sensíveis a Ácido/genética , Animais , Venenos Elapídicos/síntese química , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Oócitos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Xenopus laevis
6.
J Pharmacol Exp Ther ; 357(2): 281-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26937021

RESUMO

Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Nicotínicos/metabolismo , Xenobióticos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Preparações Farmacêuticas/metabolismo , Receptores do Ácido Retinoico/agonistas , Ácido Retinoico 4 Hidroxilase , Especificidade por Substrato , Tretinoína/metabolismo
7.
J Enzyme Inhib Med Chem ; 31(sup2): 148-161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27424662

RESUMO

The CYP26s are responsible for metabolizing retinoic acid and play an important role in maintaining homeostatic levels of retinoic acid. Given the ability of CYP2C8 to metabolize retinoic acid, we evaluated the potential for CYP2C8 inhibitors to also inhibit CYP26. In vitro assays were used to evaluate the inhibition potencies of CYP2C8 inhibitors against CYP26A1 and CYP26B1. Using tazarotenic acid as a substrate for CYP26, IC50 values for 17 inhibitors of CYP2C8 were determined for CYP26A1 and CYP26B1, ranging from ∼20 nM to 100 µM, with a positive correlation observed between IC50s for CYP2C8 and CYP26A1. An evaluation of IC50's versus in vivo Cmax values suggests that inhibitors such as clotrimazole or fluconazole may interact with CYP26 at clinically relevant concentrations and may alter levels of retinoic acid. These findings provide insight into drug interactions resulting in elevated retinoic acid concentrations and expand upon the pharmacophore of CYP26 inhibition.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Retinoico 4 Hidroxilase/antagonistas & inibidores , Sítios de Ligação , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Ácido Retinoico 4 Hidroxilase/metabolismo , Relação Estrutura-Atividade , Tretinoína/metabolismo
8.
J Biol Chem ; 289(19): 13363-73, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24695733

RESUMO

Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the ß-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and ß-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Analgésicos/química , Venenos Elapídicos/química , Simulação de Acoplamento Molecular , Peptídeos/química , Animais , Sítios de Ligação , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade
9.
J Comput Aided Mol Des ; 29(6): 525-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25822046

RESUMO

Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 (PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the 'druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.


Assuntos
Antígenos de Protozoários/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Antígenos de Protozoários/química , Biofísica , Desenho Assistido por Computador , Polarização de Fluorescência , Concentração Inibidora 50 , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Receptores de Superfície Celular/antagonistas & inibidores , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Ressonância de Plasmônio de Superfície , Fluxo de Trabalho
10.
Proc Natl Acad Sci U S A ; 109(14): 5499-504, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431633

RESUMO

TWIK1 belongs to the family of background K(+) channels with two pore domains. In native and transfected cells, TWIK1 is detected mainly in recycling endosomes. In principal cells in the kidney, TWIK1 gene inactivation leads to the loss of a nonselective cationic conductance, an unexpected effect that was attributed to adaptive regulation of other channels. Here, we show that TWIK1 ion selectivity is modulated by extracellular pH. Although TWIK1 is K(+) selective at neutral pH, it becomes permeable to Na(+) at the acidic pH found in endosomes. Selectivity recovery is slow after restoration of a neutral pH. Such hysteresis makes plausible a role of TWIK1 as a background channel in which selectivity and resulting inhibitory or excitatory influences on cell excitability rely on its recycling rate between internal acidic stores and the plasma membrane. TWIK1(-/-) pancreatic ß cells are more polarized than control cells, confirming a depolarizing role of TWIK1 in kidney and pancreatic cells.


Assuntos
Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Canais de Potássio/química , Homologia de Sequência de Aminoácidos , Xenopus
11.
J Biol Chem ; 288(49): 35081-92, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24163367

RESUMO

The tandem pore domain halothane-inhibited K(+) channel 1 (THIK1) produces background K(+) currents. Despite 62% amino acid identity with THIK1, THIK2 is not active upon heterologous expression. Here, we show that this apparent lack of activity is due to a unique combination of retention in the endoplasmic reticulum and low intrinsic channel activity at the plasma membrane. A THIK2 mutant containing a proline residue (THIK2-A155P) in its second inner helix (M2) produces K(+)-selective currents with properties similar to THIK1, including inhibition by halothane and insensitivity to extracellular pH variations. Another mutation in the M2 helix (I158D) further increases channel activity and affects current kinetics. We also show that the cytoplasmic amino-terminal region of THIK2 (Nt-THIK2) contains an arginine-rich motif (RRSRRR) that acts as a retention/retrieval signal. Mutation of this motif in THIK2 induces a relocation of the channel to the plasma membrane, resulting in measurable currents, even in the absence of mutations in the M2 helix. Cell surface delivery of a Nt-THIK2-CD161 chimera is increased by mutating the arginines of the retention motif but also by converting the serine embedded in this motif to aspartate, suggesting a phosphorylation-dependent regulation of THIK2 trafficking.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Feminino , Inativação Gênica , Humanos , Espaço Intracelular/metabolismo , Células Madin Darby de Rim Canino , Potenciais da Membrana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus laevis
12.
Biochem J ; 450(1): 159-67, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23198904

RESUMO

The intra-erythrocytic proliferation of the human malaria parasite Plasmodium falciparum requires massive synthesis of PE (phosphatidylethanolamine) that together with phosphatidylcholine constitute the bulk of the malaria membrane lipids. PE is mainly synthesized de novo by the CDP:ethanolamine-dependent Kennedy pathway. We previously showed that inhibition of PE biosynthesis led to parasite death. In the present study we characterized PfECT [P. falciparum CTP:phosphoethanolamine CT (cytidylyltransferase)], which we identified as the rate-limiting step of the PE metabolic pathway in the parasite. The cellular localization and expression of PfECT along the parasite life cycle were studied using polyclonal antibodies. Biochemical analyses showed that the enzyme activity follows Michaelis-Menten kinetics. PfECT is composed of two CT domains separated by a linker region. Activity assays on recombinant enzymes upon site-directed mutagenesis revealed that the N-terminal CT domain was the only catalytically active domain of PfECT. Concordantly, three-dimensional homology modelling of PfECT showed critical amino acid differences between the substrate-binding sites of the two CT domains. PfECT was predicted to fold as an intramolecular dimer suggesting that the inactive C-terminal domain is important for dimer stabilization. Given the absence of PE synthesis in red blood cells, PfECT represents a potential antimalarial target opening the way for a rational conception of bioactive compounds.


Assuntos
Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , RNA Nucleotidiltransferases/química , Animais , Sítios de Ligação , Feminino , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo
13.
Hum Mol Genet ; 20(10): 1873-85, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21330300

RESUMO

The AFF (AF4/FMR2) family of genes includes four members: AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. AFF2/FMR2 is silenced in FRAXE intellectual disability, while the other three members have been reported to form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemias (ALLs). All AFF proteins are localized in the nucleus and their role as transcriptional activators with a positive action on RNA elongation was primarily studied. We have recently shown that AFF2/FMR2 localizes to nuclear speckles, subnuclear structures considered as storage/modification sites of pre-mRNA splicing factors, and modulates alternative splicing via the interaction with the G-quadruplex RNA-forming structure. We show here that similarly to AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31 localize to nuclear speckles and are able to bind RNA, having a high apparent affinity for the G-quadruplex structure. Interestingly, AFF3/LAF4 and AFF4/AF5q31, like AFF2/FMR2, modulate, in vivo, the splicing efficiency of a mini-gene containing a G-quadruplex structure in one alternatively spliced exon. Furthermore, we observed that the overexpression of AFF2/3/4 interferes with the organization and/or biogenesis of nuclear speckles. These findings fit well with our observation that enlarged nuclear speckles are present in FRAXE fibroblasts. Furthermore, our findings suggest functional redundancy among the AFF family members in the regulation of splicing and transcription. It is possible that other members of the AFF family compensate for the loss of AFF2/FMR2 activity and as such explain the relatively mild to borderline phenotype observed in FRAXE patients.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Fibroblastos/metabolismo , Expressão Gênica/genética , Ordem dos Genes , Genes Reporter/genética , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Splicing de RNA/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Bioinformatics ; 28(11): 1540-1, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22539672

RESUMO

MOTIVATION: In the drug discovery field, new uses for old drugs, selective optimization of side activities and fragment-based drug design (FBDD) have proved to be successful alternatives to high-throughput screening. e-Drug3D is a database of 3D chemical structures of drugs that provides several collections of ready-to-screen SD files of drugs and commercial drug fragments. They are natural inputs in studies dedicated to drug repurposing and FBDD. AVAILABILITY: e-Drug3D collections are freely available at http://chemoinfo.ipmc.cnrs.fr/e-drug3d.html either for download or for direct in silico web-based screenings.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Reposicionamento de Medicamentos , Preparações Farmacêuticas/química , Ciclofilinas/antagonistas & inibidores , Descoberta de Drogas , Humanos , Internet , Modelos Químicos
15.
J Biol Chem ; 286(42): 36509-21, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878635

RESUMO

Among mammalian secreted phospholipases A(2) (sPLA(2)s), group X sPLA(2) has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA(2) is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA(2) in HEK293 cells, which have been extensively used to analyze sPLA(2)-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA(2) inhibitors and protease inhibitors, we demonstrate that group X sPLA(2) is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA(2) inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA(2) maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion.


Assuntos
Ácido Araquidônico/metabolismo , Precursores Enzimáticos/metabolismo , Fosfolipases A2 do Grupo X/metabolismo , Pró-Proteína Convertases/metabolismo , Motivos de Aminoácidos , Animais , Ácido Araquidônico/genética , Precursores Enzimáticos/genética , Fosfolipases A2 do Grupo X/genética , Células HEK293 , Humanos , Camundongos , Mutação , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Inibidores de Proteases/farmacologia
16.
Nucleic Acids Res ; 38(Web Server issue): W615-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20444867

RESUMO

e-LEA3D web server integrates three complementary tools to perform computer-aided drug design based on molecular fragments. In drug discovery projects, there is a considerable interest in identifying novel and diverse molecular scaffolds to enhance chances of success. The de novo drug design tool is used to invent new ligands to optimize a user-specified scoring function. The composite scoring function includes both structure- and ligand-based evaluations. The de novo approach is an alternative to a blind virtual screening of large compound collections. A heuristic based on a genetic algorithm rapidly finds which fragments or combination of fragments fit a QSAR model or the binding site of a protein. While the approach is ideally suited for scaffold-hopping, this module also allows a scan for possible substituents to a user-specified scaffold. The second tool offers a traditional virtual screening and filtering of an uploaded library of compounds. The third module addresses the combinatorial library design that is based on a user-drawn scaffold and reactants coming, for example, from a chemical supplier. The e-LEA3D server is available at: http://bioinfo.ipmc.cnrs.fr/lea.html.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Software , Ácido Benzoico/química , Biologia Computacional , Internet , Ligantes , Receptores do Ácido Retinoico/química , Receptor alfa de Ácido Retinoico , Interface Usuário-Computador
17.
Proc Natl Acad Sci U S A ; 106(34): 14628-33, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667202

RESUMO

Mechanosensitive K(+) channels TREK1 and TREK2 form a subclass of two P-domain K(+) channels. They are potently activated by polyunsaturated fatty acids and are involved in neuroprotection, anesthesia, and pain perception. Here, we show that acidification of the extracellular medium strongly inhibits TREK1 with an apparent pK near to 7.4 corresponding to the physiological pH. The all-or-none effect of pH variation is steep and is observed within one pH unit. TREK2 is not inhibited but activated by acidification within the same range of pH, despite its close homology with TREK1. A single conserved residue, H126 in TREK1 and H151 in TREK2, is involved in proton sensing. This histidine is located in the M1P1 extracellular loop preceding the first P domain. The differential effect of acidification, that is, activation for TREK2 and inhibition for TREK1, involves other residues located in the P2M4 loop, linking the second P domain and the fourth membrane-spanning segment. Structural modeling of TREK1 and TREK2 and site-directed mutagenesis strongly suggest that attraction or repulsion between the protonated side chain of histidine and closely located negatively or positively charged residues in P2M4 control outer gating of these channels. The differential sensitivity of TREK1 and TREK2 to external pH variations discriminates between these two K(+) channels that otherwise share the same regulations by physical and chemical stimuli, and by hormones and neurotransmitters.


Assuntos
Histidina/fisiologia , Mutação , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Estimulação Elétrica , Espaço Extracelular/química , Feminino , Histidina/química , Histidina/genética , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Estrutura Terciária de Proteína , Prótons , Xenopus
18.
Neuropharmacology ; 185: 108453, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450275

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cationic channels involved in pain and other processes, underscoring the potential therapeutic value of specific inhibitors such as the three-finger toxin mambalgin-1 (Mamb-1) from snake venom. A low-resolution structure of the human-ASIC1a/Mamb-1 complex obtained by cryo-electron microscopy has been recently reported, implementing the structure of the chicken-ASIC1/Mamb-1 complex previously published. Here we combine structure-activity relationship of both the rat ASIC1a channel and the Mamb-1 toxin with a molecular dynamics simulation to obtain a detailed picture at the level of side-chain interactions of the binding of Mamb-1 on rat ASIC1a channels and of its inhibition mechanism. Fingers I and II of Mamb-1 but not the core of the toxin are required for interaction with the thumb domain of ASIC1a, and Lys-8 of finger I potentially interacts with Tyr-358 in the thumb domain. Mamb-1 does not interfere directly with the pH sensor as previously suggested, but locks by several contacts a key hinge between α4 and α5 helices in the thumb domain of ASIC1a to prevent channel opening. Our results provide an improved model of inhibition of mammalian ASIC1a channels by Mamb-1 and clues for further development of optimized ASIC blockers.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Galinhas , Relação Dose-Resposta a Droga , Venenos Elapídicos/genética , Feminino , Dor , Peptídeos/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Xenopus laevis
19.
Mol Inform ; 39(8): e2000081, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573978

RESUMO

sensaas is a tool developed for aligning and comparing molecular shapes and sub-shapes. Alignment is obtained by registration of 3D point-based representations of the van der Waals surface. The method uses local properties of the shape to identify the correspondence relationships between two point clouds containing up to several thousand colored (labeled) points. Our rigid-body superimposition method follows a two-stage approach. An initial alignment is obtained by matching pose-invariant local 3D descriptors, called FPFH, of the input point clouds. This stage provides a global superimposition of the molecular surfaces, without any knowledge of their initial pose in 3D space. This alignment is then refined by optimizing the matching of colored points. In our study, each point is colored according to its closest atom, which itself belongs to a user defined physico-chemical class. Finally, sensaas provides an alignment and evaluates the molecular similarity by using Tversky coefficients. To assess the efficiency of this approach, we tested its ability to reproduce the superimposition of X-ray structures of the benchmarking AstraZeneca (AZ) data set and, compared its results with those generated by the two shape-alignment approaches shaep and shafts. We also illustrated submatching properties of our method with respect to few substructures and bioisosteric fragments. The code is available upon request from the authors (demo version at https://chemoinfo.ipmc.cnrs.fr/SENSAAS).


Assuntos
Algoritmos , Modelos Moleculares , Bases de Dados de Proteínas , Ligantes , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Cancers (Basel) ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526884

RESUMO

Melanoma patients harboring the BRAFV600E mutation are treated with vemurafenib. Almost all of them ultimately acquire resistance, leading to disease progression. Here, we find that a small molecule from a marine sponge, panicein A hydroquinone (PAH), overcomes resistance of BRAFV600E melanoma cells to vemurafenib, leading to tumor elimination in corresponding human xenograft models in mice. We report the synthesis of PAH and demonstrate that this compound inhibits the drug efflux activity of the Hedgehog receptor, Patched. Our SAR study allowed identifying a key pharmacophore responsible for this activity. We showed that Patched is strongly expressed in metastatic samples from a cohort of melanoma patients and is correlated with decreased overall survival. Patched is a multidrug transporter that uses the proton motive force to efflux drugs. This makes its function specific to cancer cells, thereby avoiding toxicity issues that are commonly observed with inhibitors of ABC multidrug transporters. Our data provide strong evidence that PAH is a highly promising lead for the treatment of vemurafenib resistant BRAFV600E melanoma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa