Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893415

RESUMO

The synergistic effect of drug and gene delivery is expected to significantly improve cancer therapy. However, it is still challenging to design suitable nanocarriers that are able to load simultaneously anticancer drugs and nucleic acids due to their different physico-chemical properties. In the present work, an amphiphilic block copolymer comprising a biocompatible poly(ethylene glycol) (PEG) block and a multi-alkyne-functional biodegradable polycarbonate (PC) block was modified with a number of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) side chains applying the highly efficient azide-alkyne "click" chemistry reaction. The resulting cationic amphiphilic copolymer with block and graft architecture (MPEG-b-(PC-g-PDMAEMA)) self-associated in aqueous media into nanosized micelles which were loaded with the antioxidant, anti-inflammatory, and anticancer drug quercetin. The drug-loaded nanoparticles were further used to form micelleplexes in aqueous media through electrostatic interactions with DNA. The obtained nanoaggregates-empty and drug-loaded micelles as well as the micelleplexes intended for simultaneous DNA and drug codelivery-were physico-chemically characterized. Additionally, initial in vitro evaluations were performed, indicating the potential application of the novel polymer nanocarriers as drug delivery systems.


Assuntos
DNA , Portadores de Fármacos , Metacrilatos , Micelas , Nylons , Quercetina , Quercetina/química , Quercetina/farmacologia , Metacrilatos/química , DNA/química , Nylons/química , Portadores de Fármacos/química , Humanos , Polietilenoglicóis/química , Nanopartículas/química , Polímeros/química
2.
Biomacromolecules ; 24(5): 2213-2224, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014992

RESUMO

Spherical nucleic acids have emerged as a class of nanostructures, exhibiting a wide variety of properties, distinctly different from those of linear nucleic acids, and a plethora of applications in therapeutics and diagnostics. Herein, we report on preparation of 3D nucleic acid nanostructures, prepared by self-assembly of polymer-oligonucleotide conjugates. The latter are obtained by grafting multiple alkyne-functionalized oligonucleotide strands onto azide-modified homo-, block, and random (co)polymers of chloromethylstyrene via initiator-free click coupling chemistry to form conjugates of comblike and coil-comb chain architectures. The resulting conjugates are amphiphilic and form stable nanosized supramolecular structures in aqueous solution. The nanoconstructs are thoroughly investigated and a number of physical characteristics, in particular, molar mass, size, aggregation number, zeta potential, material density, number of oligonucleotide strands per particle, grafting density, and their relation to hallmark properties of spherical nucleic acids - biocompatibility, resistance against DNase I, cellular uptake without the need for transfection agents - are determined.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Ácidos Nucleicos/química , Polímeros/química , Oligonucleotídeos/química , Nanoestruturas/química , Química Click
3.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445767

RESUMO

Polymer micelles represent one of the most attractive drug delivery systems due to their design flexibility based on a variety of macromolecular synthetic methods. The environmentally safe chemistry in which the use or generation of hazardous materials is minimized has an increasing impact on polymer-based drug delivery nanosystems. In this work, a solvent-free green synthetic procedure was applied for the preparation of an amphiphilic diblock copolymer consisting of biodegradable hydrophobic poly(acetylene-functional carbonate) and biocompatible hydrophilic polyethylene glycol (PEG) blocks. The cyclic functional carbonate monomer 5-methyl-5-propargyloxycarbonyl-1,3-dioxane-2-one (MPC) was polymerized in bulk using methoxy PEG-5K as a macroinitiator by applying the metal-free organocatalyzed controlled ring-opening polymerization at a relatively low temperature of 60 °C. The functional amphiphilic block copolymer self-associated in aqueous media into stable micelles with an average diameter of 44 nm. The copolymer micelles were physico-chemically characterized and loaded with the plant-derived anticancer drug curcumin. Preliminary in vitro evaluations indicate that the functional copolymer micelles are non-toxic and promising candidates for further investigation as nanocarriers for biomedical applications.


Assuntos
Curcumina , Micelas , Portadores de Fármacos/química , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos
4.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807512

RESUMO

Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl- channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs-1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.


Assuntos
Fosfatidilcolinas , Esfingomielinas , Bestrofinas/química , Bestrofinas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/química , Esfingomielinas/química
5.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299209

RESUMO

Misfolded amyloid beta (Aß) peptides aggregate and form neurotoxic oligomers. Membrane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are among the possible mechanisms of Aß cytotoxicity. Galantamine (GAL) prevents apoptosis induced by Aß mainly through the ability to stimulate allosterically the α7 nAChRs and to regulate the calcium cytosolic concentration. Here, we examined the cytoprotective effects of two GAL derivatives, namely compounds 4b and 8, against Aß cytotoxicity on the human neuroblastoma cell line SH-SY5Y. The protective effects were tested at simultaneous administration, pre-incubation and post-incubation, with Aß. GAL and curcumin (CU) were used in the study as reference compounds. It was found that 4b protects cells in a similar mode as GAL, while compound 8 and CU potentiate the toxic effects of Aß. Allosteric stimulation of α7 nAChRs is suggested as a possible mechanism of the cytoprotectivity of 4b. These and previous findings characterize 4b as a prospective non-toxic multi-target agent against neurodegenerative disorders with inhibitory activity on acetylcholinesterase, antioxidant, and cytoprotective properties.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Curcumina/química , Galantamina/química , Neuroblastoma/tratamento farmacológico , Substâncias Protetoras/farmacologia , Acetilcolinesterase/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Inibidores da Colinesterase/química , Curcumina/farmacologia , Citoproteção , Galantamina/farmacologia , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Substâncias Protetoras/química , Células Tumorais Cultivadas
6.
Chem Biodivers ; 17(4): e2000051, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32187453

RESUMO

Chlorogenic (5-CQA), 1,5-, 3,5-, 4,5- and 3,4-dicaffeoylquinic (DCQA) acids were identified and quantified in the methanol extracts of Inula oculus-christi L., I. bifrons L., I. aschersoniana Janka var. aschersoniana, I. ensifolia L., I. conyza (Griess.) DC. and I. germanica L. by HPLC analysis. The amount of 5-CQA varied from 5.48 to 28.44 mg/g DE and the highest content was detected in I. ensifolia. 1,5-DCQA (4.05-55.25 mg/g DE) was the most abundant dicaffeoyl ester of quinic acid followed by 3,5-DCQA, 4,5-DCQA and 3,4-DCQA. The extract of I. ensifolia showed the highest total phenolic content (119.92±0.95 mg GAE/g DE) and exhibited the strongest DPPH radical scavenging activity (69.41±0.55 %). I. bifrons extract was found to be the most active sample against ABTS.+ (TEAC 0.257±0.012 mg/mL) and the best tyrosinase inhibitor. The studied extracts demonstrated a low inhibitory effect towards acetylcholinesterase and possessed low cytotoxicity in concentration range from 10 to 300 µg/mL toward non-cancer (MDCK II) and cancer (A 549) cells.


Assuntos
Acetilcolinesterase/química , Antioxidantes/química , Inibidores Enzimáticos/química , Inula/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ácido Quínico/análogos & derivados , Acetilcolinesterase/metabolismo , Animais , Bulgária , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cães , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Flores/química , Flores/metabolismo , Humanos , Inula/metabolismo , Células Madin Darby de Rim Canino , Monofenol Mono-Oxigenase/metabolismo , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Ácido Quínico/farmacologia
7.
Biotechnol Biotechnol Equip ; 29(1): 101-104, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019622

RESUMO

Bestrophin-1 (Best1) is a transmembrane protein, found in the basolateral plasma membrane of retinal pigmented epithelial cells. The exact structure and functions of Best1 protein are still unclear. The protein is thought to be a regulator of ion channels, or an ion channel itself: it was shown to be permeable for chloride, thiocyanate, bicarbonate, glutamate and γ-aminobutyric acid (GABA). Mutations in the gene for Best1 are leading to best vitelliform macular dystrophy (BVMD) and are found in several other types of maculopathy. In order to obtain additional information about Best1 protein, we determined cell polarization of a stably transfected Madin-Darby canine kidney cell line II (MDCK II) cell line, expressing human Best1. We measured the transepithelial resistance of transfected and non-transfected MDCK cells by voltmeter EVOM, over 10 days at 24 hour intervals. The first few days (first-fourth day) both cell lines showed the same or similar values ​​of transmembrane resistance. As expected, on the fifth day the non-transfected cells showed maximum value of epithelial resistance, corresponding to the forming of monolayer. The transfected cells showed maximum value of transepithelial resistance on the ninth day of their cultivation. Phalloidin staining of actin demonstrated the difference in actin arrangements between transfected and non-transfected cells due to Best1. As a consequence of actin rearrangement, Best1 strongly affects the transepithelial resistance of polarizing stably transfected MDCK cells. Our results suggest that Best1 protein has an effect on transepithelial resistance and actin rearrangements of polarized stably transfected MDCK cells.

8.
Biotechnol Biotechnol Equip ; 29(1): 181-188, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019631

RESUMO

Lamium album L. is a perennial herb widely used in folk medicine. It possesses a wide spectrum of therapeutic activities (anti-inflammatory, astringent, antiseptic, antibiotic, antispasmodic, antioxidant and anti-proliferative). Preservation of medicinal plant could be done by in vitro propagation to avoid depletion from their natural habitat. It is important to know whether extracts from L. album plants grown in vitro possess similar properties as extracts from plants grown in vivo. For these reasons, it is important to examine changes in the composition of secondary metabolites during in vitro cultivation of the plant and how they affect the biological activity. We used A549 human cancer cell line and normal kidney epithelial cells MDCKII (Madin-Darby canine kidney cells II) as controls in assessing the anti-cancer effect of plant extracts. To elucidate changes in some key functional characteristics, adhesion test, MTT (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide), transepithelial resistance (TER), immunofluorescence staining and trypan blue exclusion test were performed. Methanol and chloroform extracts of in vivo and in vitro propagated plants affected differently cancerous and non-cancerous cells. The most pronounced differences were observed in the morphological analysis and in the cell adhesive properties. We also detected suppressed epithelial transmembrane electrical resistance of MDCK II cells, by treatment with plant extracts, compared to non-treated MDCK II cells. A549 cells did not polarize under the same conditions. Altered organization of actin filaments in both cell types were noticed suggesting that extracts from L. album L. change TER and actin filaments, and somehow may block cell mechanisms, leading to the polarization of MDCK II cells.

9.
Biotechnol Biotechnol Equip ; 28(5): 918-922, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26019578

RESUMO

Secreted Phospholipases A2 (sPLA2s) represent a large family of structurally related enzymes, which target different tissues and organs and induce numerous pharmacological effects based on their catalytic specificity - hydrolysis of the sn-2 ester bond of glycerophospholipids. The neurotoxin vipoxin, isolated from the venom of Vipera ammodytes meriodionalis, is a heterodimeric postsynaptic ionic complex composed of two protein subunits - a basic and toxic His48 sPLA2 enzyme and an acidic, enzymatically inactive and non-toxic component. In this paper, for the first time, we demonstrate that vipoxin sPLA2 enzyme affects cell integrity and viability of four cell types and causes different cell responses. The most dramatic local tissue effects were observed with RPE-1 (retinal pigment epithelial) cells followed by A549 (adenocarcinomic human alveolar epithelial) cells and MDCK (Madin-Darby Canine Kidney epithelial) cells. Products of the enzymatic reaction, lysophospholipids and unsaturated free fatty acids, act as lipid mediators that can induce membrane damaging or can stimulate cell proliferation. Our preliminary results on the cytotoxic effect of vipoxin sPLA2 on A549 cells are promising in searching of its eventual anticancer potential.

10.
Int J Mol Sci ; 14(7): 15121-40, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23880862

RESUMO

Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery.


Assuntos
Canais de Cloreto/metabolismo , Proteínas do Olho/metabolismo , Animais , Bestrofinas , Linhagem Celular , Canais de Cloreto/análise , Canais de Cloreto/genética , Cães , Proteínas do Olho/análise , Proteínas do Olho/genética , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células Madin Darby de Rim Canino , Microscopia Confocal , Mutagênese Sítio-Dirigida , Fosforilação , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo , Distrofia Macular Viteliforme/patologia
11.
Nanomaterials (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999289

RESUMO

The synthesis of well-defined multifunctional polymers is of great importance for the development of complex materials for biomedical applications. In the current work, novel and multi-amino-functional diblock copolymer for potential gene and drug delivery applications was successfully synthesized. A highly efficient one-step and quantitative modification of an alkyne-functional polycarbonate-based precursor was performed, yielding double hydrophilic block copolymer with densely grafted primary amine side groups. The obtained positively charged block copolymer co-associated with DNA, forming stable and biocompatible nanosized polyplexes. Furthermore, polyion complex (PIC) micelles with tunable surface charge and decorated with cell targeting moieties were obtained as a result of direct mixing in aqueous media of the multi-amino-functional block copolymer and a previously synthesized oppositely charged block copolymer bearing disaccharide end-group. The obtained well-defined nanosized PIC-micelles were loaded with the hydrophobic drug curcumin. Both types of nanoaggregates (polyplexes and PIC-micelles) were physico-chemically characterized. Moreover, initial in vitro evaluations were performed to assess the nanocarriers' potential for biomedical applications.

12.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556721

RESUMO

Spherical nucleic acids (SNAs) have gained significant attention due to their unique properties allowing them to overcome the challenges that face current nanocarriers used for gene therapies. The aim of this study is to synthesize and characterize polymer-oligonucleotide conjugates of different architecture and to evaluate the possibility of forming SNAs with biodegradable cores. Initially, two types of azide (multi)functional polyester-based (co)polymers were successfully synthesized and characterized. In the next step, short oligonucleotide strands were attached to the polymer chains applying the highly efficient and metal-free "click" reaction, thus forming conjugates with block or graft architecture. Both conjugates spontaneously self-assembled in aqueous media forming nanosized SNAs with a biodegradable polyester core and a surface of oligonucleotide chains as evidenced from dynamic and electrophoretic light scattering measurements. The nano-assemblies were in vitro evaluated for potential cytotoxicity. Furthermore, the interactions of the newly synthesized SNAs with membrane lipids were studied. The preliminary results indicate that both types of polymer-based SNAs are good candidates for potential application in gene therapy and that it is worth to be further evaluated.

13.
Adv Colloid Interface Sci ; 302: 102619, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35276535

RESUMO

The transmembrane Ca2+ - activated Cl- channel - human bestrophin-1 (hBest1) is expressed in retinal pigment epithelium and mutations of BEST1 gene cause ocular degenerative diseases colectivelly referred to as "bestrophinopathies". A large number of genetical, biochemical, biophysical and molecular biological studies have been performed to understand the relationship between structure and function of the hBest1 protein and its pathophysiological significance. Here, we review the current understanding of hBest1 surface organization, interactions with membrane lipids in model membranes, and its association with microdomains of cellular membranes. These highlights are significant for modulation of channel activity in cells.


Assuntos
Canais de Cloreto , Proteínas do Olho , Bestrofinas/química , Bestrofinas/metabolismo , Membrana Celular/química , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Propriedades de Superfície
14.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296836

RESUMO

Spherical nucleic acids (SNAs)-nanostructures, consisting of a nanoparticle core densely functionalized with a shell of short oligonucleotide strands-are a rapidly emerging class of nanoparticle-based therapeutics with unique properties and specific applications as drug and nucleic acid delivery and gene regulation materials. In this contribution, we report on the preparation of hollow SNA nanoconstructs by co-assembly of an originally synthesized nucleolipid-a hybrid biomacromolecule, composed of a lipidic residue, covalently linked to a DNA oligonucleotide strand-with other lipids. The nucleolipid was synthesized via a click chemistry approach employing initiator-free, UV light-induced thiol-ene coupling of appropriately functionalized intermediates, performed in mild conditions using a custom-made UV light-emitting device. The SNA nanoconstructs were of a vesicular structure consisting of a self-closed bilayer membrane in which the nucleolipid was intercalated via its lipid-mimetic residue. They were in the lower nanometer size range, moderately negatively charged, and were found to carry thousands of oligonucleotide strands per particle, corresponding to a grafting density comparable to that of other SNA structures. The surface density of the strands on the bilayer implied that they adopted an unextended conformation. We demonstrated that preformed vesicular structures could be successfully loaded with either hydrophilic or hydrophobic dyes.

15.
Nanoscale Adv ; 4(18): 3793-3803, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133345

RESUMO

Vesicular spherical nucleic acids are dynamic nucleic acid-based supramolecular structures that are held together via non-covalent bonds. They have promising applications as drug and nucleic acid delivery materials, diagnostic and imaging tools and platforms for development of various therapeutic schemes. In this contribution, we report on vesicular spherical nucleic acids, constructed from a non-phospholipid nucleolipid - an original hybrid biomacromolecule, composed of a hydrophobic residue, resembling that of the naturally occurring phospholipids, and a DNA oligonucleotide strand. The nucleolipid was synthesized by coupling of dibenzocyclooctyne-functionalized oligonucleotide and azidated 1,3-dihexadecyloxy-propane-2-ol via an azide-alkyne click reaction. In aqueous solution it spontaneously self-associated into nanosized supramolecular structures, identified as unilamellar vesicles composed of a self-closed interdigitated bilayer. Vesicular structures were also formed upon intercalation of the nucleolipid via its lipid-mimetic residue in the phospholipid bilayer membrane of liposomes prepared from readily available and FDA-approved lipids (1,2-dipalmitoyl-rac-glycero-3-phosphocholine and cholesterol). The vesicular structures are thoroughly investigated by light scattering (dynamic, static, and electrophoretic) and cryogenic TEM and the physical characteristics, in particular, number of strands per particle, grafting density, and conformation of the strands, were compared to those of reference spherical nucleic acids. Finally, the vesicular structures were shown to exhibit cellular internalization with no need of transfection agents and enhanced colloidal and nuclease stability.

16.
Membranes (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451008

RESUMO

Human bestrophin-1 protein (hBest1) is a transmembrane channel associated with the calcium-dependent transport of chloride ions in the retinal pigment epithelium as well as with the transport of glutamate and GABA in nerve cells. Interactions between hBest1, sphingomyelins, phosphatidylcholines and cholesterol are crucial for hBest1 association with cell membrane domains and its biological functions. As cholesterol plays a key role in the formation of lipid rafts, motional ordering of lipids and modeling/remodeling of the lateral membrane structure, we examined the effect of different cholesterol concentrations on the surface tension of hBest1/POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and hBest1/SM Langmuir monolayers in the presence/absence of Ca2+ ions using surface pressure measurements and Brewster angle microscopy studies. Here, we report that cholesterol: (1) has negligible condensing effect on pure hBest1 monolayers detected mainly in the presence of Ca2+ ions, and; (2) induces a condensing effect on composite hBest1/POPC and hBest1/SM monolayers. These results offer evidence for the significance of intermolecular protein-lipid interactions for the conformational dynamics of hBest1 and its biological functions as multimeric ion channel.

17.
Hum Mutat ; 31(5): E1406-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20333770

RESUMO

Autosomal-recessive retinitis pigmentosa (arRP) was recently associated with mutations in a novel gene EYS, spanning over 2 Mb, making it the largest known gene expressed in the human eye. The purpose of this study was to establish the prevalence and nature of EYS mutations in a clinically well-characterized cohort of 239 sporadic and arRP French cases. Direct sequencing of EYS was performed in 186 subjects for whom known mutations had previously been excluded by applying microarray technology. We mostly identified novel mutations in EYS in a total of 29 patients: Fifteen of the mutations were predicted to create premature stop codons and two represent exonic deletions. In addition, twenty missense, silent or splice-site mutations were detected. Patients revealed homozygous or compound heterozygous mutations and in some cases, only a single mutation. Most patients showed classical signs of RP with relatively preserved central vision and visual field until late in the course of the disorder. One patient showed predominance of the disease in the inferior part of the retina suggesting potential phenotypic variability. With a prevalence of 12% or more we provide evidence that EYS is a major gene for RP in France and probably elsewhere.


Assuntos
Proteínas do Olho/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Códon sem Sentido , Feminino , França , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Adulto Jovem
18.
Colloids Surf B Biointerfaces ; 189: 110893, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113084

RESUMO

Human bestrophin-1 (hBest1) is a transmembrane Ca2+- dependent anion channel, associated with the transport of Cl-, HCO3- ions, γ-aminobutiric acid (GABA), glutamate (Glu), and regulation of retinal homeostasis. Its mutant forms cause retinal degenerative diseases, defined as Bestrophinopathies. Using both physicochemical - surface pressure/mean molecular area (π/A) isotherms, hysteresis, compressibility moduli of hBest1/sphingomyelin (SM) monolayers, Brewster angle microscopy (BAM) studies, and biological approaches - detergent membrane fractionation, Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) and immunofluorescence staining of stably transfected MDCK-hBest1 and MDCK II cells, we report: 1) Ca2+, Glu and GABA interact with binary hBest1/SM monolayers at 35 °C, resulting in changes in hBest1 surface conformation, structure, self-organization and surface dynamics. The process of mixing in hBest1/SM monolayers is spontaneous and the effect of protein on binary films was defined as "fluidizing", hindering the phase-transition of monolayer from liquid-expanded to intermediate (LE-M) state; 2) in stably transfected MDCK-hBest1 cells, bestrophin-1 was distributed between detergent resistant (DRM) and detergent-soluble membranes (DSM) - up to 30 % and 70 %, respectively; in alive cells, hBest1 was visualized in both liquid-ordered (Lo) and liquid-disordered (Ld) fractions, quantifying protein association up to 35 % and 65 % with Lo and Ld. Our results indicate that the spontaneous miscibility of hBest1 and SM is a prerequisite to diverse protein interactions with membrane domains, different structural conformations and biological functions.


Assuntos
Bestrofinas/química , Membrana Celular/química , Esfingomielinas/química , Humanos , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
Macromol Biosci ; 18(4): e1700349, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488321

RESUMO

The present contribution is focused on feasibility of using comb-like copolymers of polyethylenimine with poly(2-ethyl-2-oxazoline) (LPEI-comb-PEtOx) with varying grafting densities and degrees of polymerization of PEI and PEtOx to deliver DNA molecules into cells. The copolymers form small and well-defined particles at elevated temperatures, which are used as platforms for binding and condensing DNA. The electrostatic interactions between particles and DNA result in formation of sub-100 nm polyplex particles of narrow size distribution and different morphology and structure. The investigated gene delivery systems exhibit transfection efficiency dependent on the copolymer chain topology, shape of the polyplex particles, and internalization pathway. Flow cytometry shows enhanced transfection efficiency of the polyplexes with elongated and ellipsoidal morphology. The preliminary biocompatibility study on a panel of human cell lines shows that pure copolymers and polyplexes thereof are practically devoid of cytotoxicity.


Assuntos
DNA/efeitos dos fármacos , Técnicas de Transferência de Genes , Poliaminas/química , Polietilenoimina/química , Proliferação de Células/efeitos dos fármacos , DNA/química , Poliaminas/farmacologia , Polietilenoimina/farmacologia , Polimerização , Polímeros/química , Polímeros/farmacologia , Eletricidade Estática , Transfecção
20.
Colloids Surf B Biointerfaces ; 161: 192-199, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080503

RESUMO

Bestrophinopathies are ocular diseases caused by mutations in the human bestrophin-1 (hBest1) - transmembrane Ca2+-activated chloride channel protein, mainly expressed in the retinal pigment epithelium (RPE) cells. hBest1 is also an important transporter for neurotransmitters such as glutamate (Glu) and γ-aminobutyric acid (GABA) in the nervous system. Recently, a new biological role of hBest1, related to its possible involvement in the pathology of brain diseases (Alzheimer's, Parkinson's disease) has been proposed. Here, we report the effects of Ca2+, Glu and GABA on hBest1 and composite hBest1/POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) Langmuir and Langmuir-Blodgett monolayers based on surface dynamics (π/A isotherms, hysteresis and compressibility), morphology (Brewster angle microscopy, BAM) and visualization of protein molecular organization (Atomic force microscopy, AFM). Ca2+ ions and neurotransmitters Glu and GABA affect hBest1 topology at the air/water interface altering its surface activity, size, orientation and organization. In contrast, no significant changes were detected on π/A isotherms and hysteresis of the composite hBest1/POPC films but their effects on structure, aggregation state and orientation hBest1 established by BAM and AFM differentiate. We found that the binary films of hBest1 and POPC are phase separated at the air/water interface, suggesting stronger lipid-lipid and protein-protein interactions than lipid-protein interactions that can significantly alter the molecular organization and activity of hBest1 in cell membranes. Our data shed light on structure, surface behavior and organization of hBest1 that define relationship structure-functional activity of hBest1 as transport channel.


Assuntos
Bestrofinas/química , Cálcio/química , Ácido Glutâmico/química , Fosfatidilcolinas/química , Ácido gama-Aminobutírico/química , Algoritmos , Animais , Bestrofinas/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cães , Ácido Glutâmico/metabolismo , Humanos , Células Madin Darby de Rim Canino , Microscopia de Força Atômica , Fosfatidilcolinas/metabolismo , Propriedades de Superfície , Termodinâmica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa