RESUMO
BACKGROUND: Cisplatin-induced ototoxicity (CIO), characterized by irreversible and progressive bilateral hearing loss, is a prevalent adverse effect of cisplatin chemotherapy. Alongside clinical risk factors, genetic variants contribute to CIO and genome-wide association studies (GWAS) have highlighted the polygenicity of this adverse drug reaction. Polygenic scores (PGS), which integrate information from multiple genetic variants across the genome, offer a promising tool for the identification of individuals who are at higher risk for CIO. Integrating large-scale hearing loss GWAS data with single cell omics data holds potential to overcome limitations related to small sample sizes associated with CIO studies, enabling the creation of PGSs to predict CIO risk. RESULTS: We utilized a large-scale hearing loss GWAS and murine inner ear single nuclei RNA-sequencing (snRNA-seq) data to develop two polygenic scores: a hearing loss PGS (PGSHL) and a biologically informed PGS for CIO (PGSCIO). The PGSCIO included only variants which mapped to genes that were differentially expressed within cochlear cells that showed differential abundance in the murine snRNA-seq data post-cisplatin treatment. Evaluation of the association of these PGSs with CIO in our target CIO cohort revealed that PGSCIO demonstrated superior performance (P = 5.54 × 10- 5) relative to PGSHL (P = 2.93 × 10- 3). PGSCIO was also associated with CIO in our test cohort (P = 0.04), while the PGSHL did not show a significant association with CIO (P = 0.52). CONCLUSION: This study developed the first PGS for CIO using a large-scale hearing loss dataset and a biologically informed filter generated from cisplatin-treated murine inner ear snRNA-seq data. This innovative approach offers new avenues for developing PGSs for pharmacogenomic traits, which could contribute to the implementation of tailored therapeutic interventions. Further, our approach facilitated the identification of specific cochlear cells that may play critical roles in CIO. These novel insights will guide future research aimed at developing targeted therapeutic strategies to prevent CIO.
Assuntos
Cisplatino , Estudo de Associação Genômica Ampla , Perda Auditiva , Herança Multifatorial , Ototoxicidade , Cisplatino/efeitos adversos , Animais , Ototoxicidade/genética , Ototoxicidade/patologia , Camundongos , Herança Multifatorial/genética , Humanos , Perda Auditiva/genética , Perda Auditiva/induzido quimicamente , Perda Auditiva/patologia , Análise de Célula Única , Polimorfismo de Nucleotídeo Único/genética , Antineoplásicos/efeitos adversosRESUMO
PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.
Assuntos
Proteínas Ferro-Enxofre , Peixe-Zebra , Animais , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Feminino , Fenótipo , Fibroblastos/metabolismo , Fibroblastos/patologia , Citosol/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Microcefalia/genética , Microcefalia/patologia , Lactente , MetalochaperonasRESUMO
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, which is accompanied by a variety of comorbidities including metabolic, reproductive, and psychiatric disorders. Genome-wide association studies have identified several genetic variants that are associated with PCOS. However, these variants often occur outside of coding regions and require further investigation to understand their contribution to PCOS. A transcriptome-wide association study (TWAS) was performed to uncover heritable gene expression profiles that are associated with PCOS in two independent cohorts. Causal gene prioritization was subsequently performed and expression of genes prioritized through these analyses was examined in 49 PCOS patients and 30 controls. TWAS analyses revealed that increased expression of ARL14EP was significantly associated with PCOS risk in the discovery (P = 1.6 × 10-6) and replication cohorts (P = 2.0 × 10-13). Gene prioritization pipelines provided further evidence that ARL14EP is the most likely causal gene at this locus. ARL14EP gene expression was shown to be significantly different between PCOS cases and controls, after adjusting for body mass index, age and testosterone levels (P = 1.2 × 10-13). This study has provided evidence for the role of ARL14EP in PCOS. Given that ARL14EP has been reported to play an important role in chromatin remodeling, variants affecting the expression of ARL14EP may also affect the expression of other genes that contribute to PCOS pathogenesis.
Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndrome do Ovário Policístico/genética , TranscriptomaRESUMO
Huntington disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Although the length of this repeat is inversely correlated with age of onset (AOO), it does not fully explain the variability in AOO. We assessed the sequence downstream of the CAG repeat in HTT [reference: (CAG)n-CAA-CAG], since variants within this region have been previously described, but no study of AOO has been performed. These analyses identified a variant that results in complete loss of interrupting (LOI) adenine nucleotides in this region [(CAG)n-CAG-CAG]. Analysis of multiple HD pedigrees showed that this LOI variant is associated with dramatically earlier AOO (average of 25 years) despite the same polyglutamine length as in individuals with the interrupting penultimate CAA codon. This LOI allele is particularly frequent in persons with reduced penetrance alleles who manifest with HD and increases the likelihood of presenting clinically with HD with a CAG of 36-39 repeats. Further, we show that the LOI variant is associated with increased somatic repeat instability, highlighting this as a significant driver of this effect. These findings indicate that the number of uninterrupted CAG repeats, which is lengthened by the LOI, is the most significant contributor to AOO of HD and is more significant than polyglutamine length, which is not altered in these individuals. In addition, we identified another variant in this region, where the CAA-CAG sequence is duplicated, which was associated with later AOO. Identification of these cis-acting modifiers have potentially important implications for genetic counselling in HD-affected families.
Assuntos
Códon/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , LinhagemRESUMO
Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.
Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do ExomaRESUMO
We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ataxia/genética , Deficiências do Desenvolvimento/genética , Glutaminase/deficiência , Glutaminase/genética , Glutamina/metabolismo , Repetições de Microssatélites , Mutação , Atrofia/genética , Cerebelo/patologia , Pré-Escolar , Feminino , Genótipo , Glutamina/análise , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Sequenciamento Completo do GenomaRESUMO
BACKGROUND & AIMS: According to pivotal clinical trials, cure rates for sofosbuvir-based antiviral therapy exceed 96%. Treatment failure is usually assumed to be because of virological resistance-associated substitutions or clinical risk factors, yet the role of patient-specific genetic factors has not been well explored. We determined if patient-specific genetic factors help predict patients likely to fail sofosbuvir treatment in real-world treatment situations. METHODS: We recruited sofosbuvir-treated patients with chronic hepatitis C from five Canadian treatment sites, and performed a case-control pharmacogenomics study assessing both previously published and novel genetic polymorphisms. Specifically studied were variants predicted to impair CES1-dependent production of sofosbuvir's active metabolite, interferon-λ signalling variants expected to impact a patient's immune response to the virus and an HLA variant associated with increased spontaneous and treatment-induced viral clearance. RESULTS: Three hundred and fifty-nine sofosbuvir-treated patients were available for analyses after exclusions, with 34 (9.5%) failing treatment. We identified CES1 variants as novel predictors for treatment failure in European patients (rs115629050 or rs4513095; odds ratio (OR): 5.43; 95% confidence interval (CI): 1.64-18.01; P = .0057), replicated associations with IFNL4 variants predicted to increase interferon-λ signalling (eg rs12979860; OR: 2.25; 95% CI: 1.25-4.06; P = .0071) and discovered a novel association with a coding variant predicted to enhance the activity of IFNL4's receptor (rs2834167 in IL10RB; OR: 1.81; 95% CI: 1.01-3.24; P = .047). CONCLUSIONS: Ultimately, this work demonstrates that patient-specific genetic factors could be used as a tool to identify patients at higher risk of treatment failure and allow for these patients to receive effective therapy sooner.
Assuntos
Hepatite C Crônica , Sofosbuvir , Antivirais/efeitos adversos , Canadá , Quimioterapia Combinada , Genótipo , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Humanos , Interleucinas/genética , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Falha de Tratamento , Resultado do TratamentoRESUMO
Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.
Assuntos
Aminas Biogênicas/metabolismo , Levodopa/genética , Neurotransmissores/líquido cefalorraquidiano , Quinases Ativadas por p21/deficiência , Adolescente , Adulto , Carbidopa/metabolismo , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Cinesinas/metabolismo , Levodopa/metabolismo , Levodopa/uso terapêutico , Masculino , Adulto Jovem , Quinases Ativadas por p21/metabolismoRESUMO
Over the last decades, a growing spectrum of monogenic disorders of human magnesium homeostasis has been clinically characterized, and genetic studies in affected individuals have identified important molecular components of cellular and epithelial magnesium transport. Here, we describe three infants who are from non-consanguineous families and who presented with a disease phenotype consisting of generalized seizures in infancy, severe hypomagnesemia, and renal magnesium wasting. Seizures persisted despite magnesium supplementation and were associated with significant intellectual disability. Whole-exome sequencing and conventional Sanger sequencing identified heterozygous de novo mutations in the catalytic Na+, K+-ATPase α1 subunit (ATP1A1). Functional characterization of mutant Na+, K+-ATPase α1 subunits in heterologous expression systems revealed not only a loss of Na+, K+-ATPase function but also abnormal cation permeabilities, which led to membrane depolarization and possibly aggravated the effect of the loss of physiological pump activity. These findings underline the indispensable role of the α1 isoform of the Na+, K+-ATPase for renal-tubular magnesium handling and cellular ion homeostasis, as well as maintenance of physiologic neuronal activity.
Assuntos
Deficiência Intelectual/genética , Mutação/genética , Erros Inatos do Transporte Tubular Renal/genética , Convulsões/genética , ATPase Trocadora de Sódio-Potássio/genética , Criança , Pré-Escolar , Feminino , Células Germinativas , Heterozigoto , Homeostase/genética , Humanos , Lactente , Recém-Nascido , Rim/patologia , Magnésio/metabolismo , Masculino , Fenótipo , Isoformas de Proteínas/genéticaRESUMO
Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Fosfato de Piridoxal/uso terapêutico , Piridoxina/deficiência , Vitamina B 6/metabolismo , Deficiência de Vitamina B 6/genética , Deficiência de Vitamina B 6/metabolismo , Peixe-ZebraRESUMO
BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).
Assuntos
Exoma , Testes Genéticos/métodos , Erros Inatos do Metabolismo/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Fenótipo , Adulto JovemRESUMO
PURPOSE: Tamoxifen is one of the principal treatments for estrogen receptor (ER)-positive breast cancer. Unfortunately, between 30 and 50% of patients receiving this hormonal therapy relapse. Since CYP2D6 genetic variants have been reported to play an important role in survival outcomes after treatment with tamoxifen, this study sought to summarize and critically appraise the available scientific evidence on this topic. METHODS: A systematic literature review was conducted to identify studies investigating associations between CYP2D6 genetic variation and survival outcomes after tamoxifen treatment. Critical appraisal of the retrieved scientific evidence was performed, and recommendations were developed for CYP2D6 genetic testing in the context of tamoxifen therapy. RESULTS: Although conflicting literature exists, the majority of the current evidence points toward CYP2D6 genetic variation affecting survival outcomes after tamoxifen treatment. Of note, review of the CYP2D6 genotyping assays used in each of the studies revealed the importance of comprehensive genotyping strategies to accurately predict CYP2D6 metabolizer phenotypes. CONCLUSIONS AND RECOMMENDATIONS: Critical appraisal of the literature provided evidence for the value of comprehensive CYP2D6 genotyping panels in guiding treatment decisions for non-metastatic ER-positive breast cancer patients. Based on this information, it is recommended that alternatives to standard tamoxifen treatments may be considered in CYP2D6 poor or intermediate metabolizers.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Citocromo P-450 CYP2D6/genética , Variação Genética , Receptores de Estrogênio/genética , Alelos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Tomada de Decisão Clínica , Fatores de Confusão Epidemiológicos , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Gerenciamento Clínico , Feminino , Genótipo , Humanos , Farmacogenética , Guias de Prática Clínica como Assunto , Prognóstico , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêuticoRESUMO
PURPOSE: The presentation and etiology of cerebral palsy (CP) are heterogeneous. Diagnostic evaluation can be a prolonged and expensive process that might remain inconclusive. This study aimed to determine the diagnostic yield and impact on management of next-generation sequencing (NGS) in 50 individuals with atypical CP (ACP). METHODS: Patient eligibility criteria included impaired motor function with onset at birth or within the first year of life, and one or more of the following: severe intellectual disability, progressive neurological deterioration, other abnormalities on neurological examination, multiorgan disease, congenital anomalies outside of the central nervous system, an abnormal neurotransmitter profile, family history, brain imaging findings not typical for cerebral palsy. Previous assessment by a neurologist and/or clinical geneticist, including biochemical testing, neuroimaging, and chromosomal microarray, did not yield an etiologic diagnosis. RESULTS: A precise molecular diagnosis was established in 65% of the 50 patients. We also identified candidate disease genes without a current OMIM disease designation. Targeted intervention was enabled in eight families (~15%). CONCLUSION: NGS enabled a molecular diagnosis in ACP cases, ending the diagnostic odyssey, improving genetic counseling and personalized management, all in all enhancing precision medicine practices.
Assuntos
Paralisia Cerebral/diagnóstico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Medicina de Precisão , Adulto , Paralisia Cerebral/genética , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Técnicas de Diagnóstico MolecularRESUMO
Dihydropyrimidine dehydrogenase (DPD) deficiency is associated with a variable clinical presentation. A family with three DPD-deficient patients presented with unusual clinical phenotypes including pregnancy-induced symptoms, transient visual impairment, severe developmental delay, cortical blindness, and delayed myelination in the brain. DPYD Sanger sequencing showed heterozygosity for the c.1905+1G>A mutation and a novel missense variant c.1700G>A (p.G567E). The recombinantly expressed p.G567E DPD variant showed increased temperature lability probably caused by structural rearrangements within the DPD protein. Genome sequencing of the affected son established compound heterozygosity for the c.1700G>A and an imperfect 115,731 bp inversion with breakpoints at chr1: 98,113,121 (intron 8) and chr1: 97,997,390 (intron 12) of the DPYD associated with a 4 bp deletion (chr1: 97,997,386_97,997,389del). Whole exome and mitochondrial DNA analyses for the mother and daughter did not reveal additional mutated genes of significance. Thus, an inversion in DPYD should be considered in patients with an inconclusive genotype or unusual clinical phenotype.
Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Mutação de Sentido Incorreto/genética , Paraparesia Espástica/genética , Adolescente , Adulto , Pré-Escolar , Mapeamento Cromossômico , Deficiência da Di-Hidropirimidina Desidrogenase/fisiopatologia , Éxons/genética , Feminino , Genótipo , Heterozigoto , Humanos , Lactente , Íntrons/genética , Masculino , Paraparesia Espástica/fisiopatologia , Fenótipo , Deleção de Sequência/genética , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Although antipsychotics are integral to the treatment of schizophrenia, drug efficacy varies between patients. Although it has been shown that antipsychotic treatment response outcomes are heritable, our understanding of the genetic factors that are involved remains incomplete. Therefore, this study aims to use an unbiased scan of the genome to identify the genetic variants contributing toward antipsychotic treatment response outcomes. MATERIALS AND METHODS: This study utilized whole-exome sequencing of patients on extreme ends of the treatment response spectrum (n=11) in combination with results from previous antipsychotic studies to design a panel of variants that were genotyped in two well-characterized first-episode schizophrenia cohorts (n=103 and 87). Association analyses were carried out to determine whether these variants were significantly associated with antipsychotic treatment response outcomes. RESULTS: Association analyses in the discovery cohort identified two nonsynonymous variants that were significantly associated with antipsychotic treatment response outcomes (P<2.7 × 10(-5)), which were also significantly associated with the corresponding treatment response outcome in an independent replication cohort. Computational approaches showed that both of these nonsynonymous variants--rs13025959 in MYO7B (E1647D) and rs10380 in MTRR (H622Y)--were predicted to impair the functioning of their corresponding protein products. CONCLUSION: The use of whole-exome sequencing in a subset of patients from a well-characterized cohort of first-episode schizophrenia patients, for whom longitudinal depot treatment response data were available, allowed for (i) the removal of confounding factors related to treatment progression and compliance and (ii) the identification of two genetic variants that have not been associated previously with antipsychotic treatment response outcomes and whose results were applicable across different classes of antipsychotics. Although the genes that are affected by these variants are involved in pathways that have been related previously to antipsychotic treatment outcomes, the identification of these novel genes will play an important role in improving our understanding of the specific variants involved in antipsychotic treatment response outcomes.
Assuntos
Antipsicóticos/uso terapêutico , Polimorfismo de Nucleotídeo Único , Esquizofrenia/dietoterapia , Esquizofrenia/genética , Ferredoxina-NADP Redutase/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Miosina/genética , Esquizofrenia/tratamento farmacológico , Análise de Sequência de DNA , Resultado do TratamentoRESUMO
We report a patient from a consanguineous family who presented with transient acute liver failure and biochemical patterns suggestive of disturbed urea cycle and mitochondrial function, for whom conventional genetic and metabolic investigations for acute liver failure failed to yield a diagnosis. Whole exome sequencing revealed a homozygous 12-bp deletion in PCK1 (MIM 614168) encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK); enzymatic studies subsequently confirmed its pathogenic nature. We propose that PEPCK deficiency should be considered in the young child with unexplained liver failure, especially where there are marked, accumulations of TCA cycle metabolites on urine organic acid analysis and/or an amino acid profile with hyperammonaemia suggestive of a proximal urea cycle defect during the acute episode. If suspected, intravenous administration of dextrose should be initiated. Long-term management comprising avoidance of fasting with the provision of a glucose polymer emergency regimen for illness management may be sufficient to prevent future episodes of liver failure. This case report provides further insights into the (patho-)physiology of energy metabolism, confirming the power of genomic analysis of unexplained biochemical phenotypes.
Assuntos
Sequência de Bases , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Gastroenterite/etiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hepatopatias/diagnóstico , Falência Hepática Aguda/etiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Deleção de Sequência , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Erros Inatos do Metabolismo dos Carboidratos/genética , Consanguinidade , Exoma , Gastroenterite/genética , Glucose/administração & dosagem , Glucose/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Hepatopatias/tratamento farmacológico , Hepatopatias/genética , Falência Hepática Aguda/genética , Masculino , Linhagem , Fosfoenolpiruvato Carboxiquinase (GTP)/genéticaRESUMO
Genetic variation in CYP2B6 and CYP2A6 is known to impact interindividual response to antiretrovirals, nicotine, and bupropion, among other drugs. However, the full catalogue of clinically relevant pharmacogenetic variants in these genes is yet to be established, especially across African populations. This study therefore aimed to characterize the star allele (haplotype) distribution in CYP2B6 and CYP2A6 across diverse and understudied sub-Saharan African (SSA) populations. We called star alleles from 961 high-depth full genomes using StellarPGx, Aldy, and PyPGx. In addition, we performed CYP2B6 and CYP2A6 star allele frequency comparisons between SSA and other global biogeographical groups represented in the new 1000 Genomes Project high-coverage dataset (n = 2,000). This study presents frequency information for star alleles in CYP2B6 (e.g., *6 and *18; frequency of 21-47% and 2-19%, respectively) and CYP2A6 (e.g., *4, *9, and *17; frequency of 0-6%, 3-10%, and 6-20%, respectively), and predicted phenotypes (for CYP2B6), across various African populations. In addition, 50 potentially novel African-ancestry star alleles were computationally predicted by StellarPGx in CYP2B6 and CYP2A6 combined. For each of these genes, over 4% of the study participants had predicted novel star alleles. Three novel star alleles in CYP2A6 (*54, *55, and *56) and CYP2B6 apiece, and several suballeles were further validated via targeted Single-Molecule Real-Time resequencing. Our findings are important for informing the design of comprehensive pharmacogenetic testing platforms, and are highly relevant for personalized medicine strategies, especially relating to antiretroviral medication and smoking cessation treatment in Africa and the African diaspora. More broadly, this study highlights the importance of sampling diverse African ethnolinguistic groups for accurate characterization of the pharmacogene variation landscape across the continent.
Assuntos
Nicotina , Farmacogenética , Humanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2A6/genética , Frequência do Gene , África Subsaariana , Genótipo , AlelosRESUMO
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Assuntos
Transtornos do Espectro Alcoólico Fetal , Tretinoína , Humanos , Feminino , Tretinoína/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Gravidez , Masculino , Predisposição Genética para Doença , Sequenciamento do ExomaRESUMO
INTRODUCTION: Cannabis products have been used in the management of headaches in adults and may play a role in pediatric chronic pain. Canadian pediatricians report increasing use of cannabis for the management of chronic headaches, despite no well-controlled studies to inform its dosing, safety, and effectiveness. The aim of our clinical trial is to determine the dosing and safety of a Cannabidiol (CBD)-enriched Cannabis Herbal Extract (CHE) for the treatment of chronic headaches in adolescents. METHODS AND ANALYSIS: Youth, parents, and an expert steering committee co-designed this tolerability study. Twenty adolescents (aged 14 to 17 years), with a chronic migraine diagnosis for more than 6 months that has not responded to other therapies will be enrolled into an open label, dose escalation study across three Canadian sites. Study participants will receive escalating doses of a CBD-enriched CHE (MPL-001 with a THC:CBD of 1:25), starting at 0.2-0.4 mg/kg of CBD per day and escalating monthly up to 0.8-1.0 mg/kg of CBD per day. The primary objective of this study is to determine the safety and tolerability of CBD-enriched CHE in adolescents with chronic migraine. Secondary objectives of this study will inform the development of subsequent randomized controlled trials and include investigating the relationship between the dose escalation and change in the frequency of headache, impact and intensity of pain, changes in sleep, mood, function, and quality of life. Exploratory outcomes include investigating steady-state trough plasma levels of bioactive cannabinoids and investigating how pharmacogenetic profiles affect cannabinoid metabolism among adolescents receiving CBD-enriched CHE. DISCUSSION: This protocol was co-designed with youth and describes a tolerability clinical trial of CBD-enriched CHE in adolescents with chronic headaches that have not responded to conventional therapies. This study is the first clinical trial on cannabis products in adolescents with chronic headaches and will inform the development of future comparative effectiveness clinical trials. TRIAL REGISTRATION: CAN-CHA trial is registered with ClinicalTrials.gov with a number of register NCT05337033.