Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(4): 579-583, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28187281

RESUMO

The spiraling cost of new drugs mandates a fundamentally different approach to keep lifesaving therapies affordable for cancer patients. We call here for the formation of new relationships between academic drug discovery centers and commercial partners, which can accelerate the development of truly transformative drugs at sustainable prices.


Assuntos
Antineoplásicos/economia , Custos de Medicamentos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Aprovação de Drogas , Custos de Medicamentos/legislação & jurisprudência , Descoberta de Drogas , Custos de Cuidados de Saúde , Humanos , Estados Unidos
3.
Cell ; 158(1): 185-197, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24954535

RESUMO

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição E2F/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas ras/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186844

RESUMO

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Traço Falciforme , Animais , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/metabolismo , Neoplasias Renais/patologia , Traço Falciforme/genética , Traço Falciforme/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
5.
Nature ; 568(7752): 410-414, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918400

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Pinocitose , Sindecana-1/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
6.
Genes Dev ; 31(11): 1109-1121, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698296

RESUMO

A key feature of high-grade serous ovarian carcinoma (HGSOC) is frequent amplification of the 3q26 locus harboring PRKC-ι (PRKCI). Here, we show that PRKCI is also expressed in early fallopian tube lesions, called serous tubal intraepithelial carcinoma. Transgenic mouse studies establish PRKCI as an ovarian cancer-specific oncogene. Mechanistically, we show that the oncogenic activity of PRKCI relates in part to the up-regulation of TNFα to promote an immune-suppressive tumor microenvironment characterized by an abundance of myeloid-derived suppressor cells and inhibition of cytotoxic T-cell infiltration. Furthermore, system-level and functional analyses identify YAP1 as a downstream effector in tumor progression. In human ovarian cancers, high PRKCI expression also correlates with high expression of TNFα and YAP1 and low infiltration of cytotoxic T cells. The PRKCI-YAP1 regulation of the tumor immunity provides a therapeutic strategy for highly lethal ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Tolerância Imunológica/genética , Isoenzimas/genética , Isoenzimas/imunologia , Neoplasias Ovarianas/genética , Proteína Quinase C/genética , Proteína Quinase C/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Movimento Celular/genética , Citocinas/genética , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/fisiopatologia , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Sinalização YAP
7.
Genes Dev ; 30(4): 355-85, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883357

RESUMO

With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/fisiopatologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatologia , Carcinoma Ductal Pancreático/terapia , Humanos , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Microambiente Tumoral/imunologia
8.
Nature ; 542(7639): 119-123, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099419

RESUMO

The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.


Assuntos
Carcinoma Ductal Pancreático/genética , Deleção de Genes , Malato Desidrogenase/deficiência , Neoplasias Pancreáticas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Biocatálise , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/psicologia , Carcinoma Ductal Pancreático/terapia , Humanos , Ácidos Cetoglutáricos/metabolismo , Malato Desidrogenase/genética , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , NADP/biossíntese , NADP/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transaminases/biossíntese , Transaminases/genética
9.
Nature ; 542(7641): 362-366, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178232

RESUMO

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Assuntos
Mesoderma/patologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Estresse do Retículo Endoplasmático/genética , Feminino , Genes myc , Genes ras , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Mesoderma/metabolismo , Camundongos , Mosaicismo , Proteína Oncogênica p55(v-myc)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/metabolismo , Transcriptoma/genética , Gencitabina
10.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
11.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119024

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Autofagia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Glicólise , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Recidiva , Transdução de Sinais , Neoplasias Pancreáticas
12.
Cancer ; 125(12): 1963-1972, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30835824

RESUMO

Substantial progress has been made in understanding ovarian cancer at the molecular and cellular level. Significant improvement in 5-year survival has been achieved through cytoreductive surgery, combination platinum-based chemotherapy, and more effective treatment of recurrent cancer, and there are now more than 280,000 ovarian cancer survivors in the United States. Despite these advances, long-term survival in late-stage disease has improved little over the last 4 decades. Poor outcomes relate, in part, to late stage at initial diagnosis, intrinsic drug resistance, and the persistence of dormant drug-resistant cancer cells after primary surgery and chemotherapy. Our ability to accelerate progress in the clinic will depend on the ability to answer several critical questions regarding this disease. To assess current answers, an American Association for Cancer Research Special Conference on "Critical Questions in Ovarian Cancer Research and Treatment" was held in Pittsburgh, Pennsylvania, on October 1-3, 2017. Although clinical, translational, and basic investigators conducted much of the discussion, advocates participated in the meeting, and many presentations were directly relevant to patient care, including treatment with poly adenosine diphosphate ribose polymerase (PARP) inhibitors, attempts to improve immunotherapy by overcoming the immune suppressive effects of the microenvironment, and a better understanding of the heterogeneity of the disease.


Assuntos
Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Assistência Centrada no Paciente , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Congressos como Assunto , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Sociedades Científicas , Microambiente Tumoral
13.
Lancet Oncol ; 18(11): e653-e706, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29208398

RESUMO

We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.


Assuntos
Pesquisa Biomédica/tendências , Planejamento em Saúde/tendências , Prioridades em Saúde , National Cancer Institute (U.S.)/tendências , Neoplasias/terapia , Pesquisa Biomédica/métodos , Previsões , Humanos , Oncologia/tendências , Neoplasias/diagnóstico , Medicina de Precisão/tendências , Estados Unidos
14.
Recent Results Cancer Res ; 207: 135-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557537

RESUMO

A major barrier to achieving durable remission and a definitive cure in oncology patients is the emergence of tumor resistance, a common outcome of different disease types, and independent from the therapeutic approach undertaken. In recent years, subpopulations of slow-cycling cells endowed with enhanced tumorigenic potential and multidrug resistance have been isolated in different tumors, and mounting experimental evidence suggests these resistant cells are responsible for tumor relapse. An in-depth metabolic characterization of resistant tumor stem cells revealed that they rely more on mitochondrial respiration and less on glycolysis than other tumor cells, a finding that challenges the assumption that tumors have a primarily glycolytic metabolism and defective mitochondria. The demonstration of a metabolic program in resistant tumorigenic cells that may be present in the majority of tumors has important therapeutic implications and is a critical consideration as we address the challenge of identifying new vulnerabilities that might be exploited therapeutically.


Assuntos
Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/metabolismo , Glicólise/fisiologia , Humanos , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo
15.
Bioorg Med Chem Lett ; 26(6): 1503-1507, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898335

RESUMO

Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478609

RESUMO

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Assuntos
Ecossistema , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Perfilação da Expressão Gênica , Transcriptoma
17.
J Exp Med ; 204(8): 1813-24, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17646409

RESUMO

gamma-secretase inhibitors (GSIs) can block NOTCH receptor signaling in vitro and therefore offer an attractive targeted therapy for tumors dependent on deregulated NOTCH activity. To clarify the basis for GSI resistance in T cell acute lymphoblastic leukemia (T-ALL), we studied T-ALL cell lines with constitutive expression of the NOTCH intracellular domain (NICD), but that lacked C-terminal truncating mutations in NOTCH1. Each of the seven cell lines examined and 7 of 81 (8.6%) primary T-ALL samples harbored either a mutation or homozygous deletion of the gene FBW7, a ubiquitin ligase implicated in NICD turnover. Indeed, we show that FBW7 mutants cannot bind to the NICD and define the phosphodegron region of the NICD required for FBW7 binding. Although the mutant forms of FBW7 were still able to bind to MYC, they do not target it for degradation, suggesting that stabilization of both NICD and its principle downstream target, MYC, may contribute to transformation in leukemias with FBW7 mutations. In addition, we show that all seven leukemic cell lines with FBW7 mutations were resistant to the MRK-003 GSI. Most of these resistant lines also failed to down-regulate the mRNA levels of the NOTCH targets MYC and DELTEX1 after treatment with MRK-003, implying that residual NOTCH signaling in T-ALLs with FBW7 mutations contributes to GSI resistance.


Assuntos
Proteínas de Ciclo Celular/genética , Inibidores Enzimáticos/farmacologia , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Leucemia/genética , Leucemia/metabolismo , Mutação , Receptores Notch/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proteína 7 com Repetições F-Box-WD , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Receptores Notch/metabolismo
18.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786705

RESUMO

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

19.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069167

RESUMO

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Éteres Fosfolipídicos/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Homeostase
20.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365326

RESUMO

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Aneuploidia , Neoplasias Renais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa