Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
2.
New Phytol ; 243(1): 82-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666344

RESUMO

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Assuntos
Mudança Climática , Eucalyptus , Folhas de Planta , Especificidade da Espécie , Eucalyptus/fisiologia , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Aclimatação/fisiologia , Austrália , Geografia
3.
Glob Chang Biol ; 28(22): 6771-6788, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36045489

RESUMO

Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13 C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13 C) during peak drought years. However, patterns of radial growth and Δ13 C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13 C for individual trees, and higher inter-correlation of Δ13 C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year-1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.


Assuntos
Secas , Água Subterrânea , Isótopos de Carbono/análise , Ecossistema , Florestas , Árvores/fisiologia
4.
New Phytol ; 229(5): 2535-2547, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217000

RESUMO

Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.


Assuntos
Árvores , Água , Dióxido de Carbono , Isótopos de Carbono , Células do Mesofilo , Fotossíntese , Folhas de Planta
5.
New Phytol ; 228(5): 1511-1523, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531796

RESUMO

Thermoregulation of leaf temperature (Tleaf ) may foster metabolic homeostasis in plants, but the degree to which Tleaf is moderated, and under what environmental contexts, is a topic of debate. Isotopic studies inferred the temperature of photosynthetic carbon assimilation to be a constant value of c. 20°C; by contrast, leaf biophysical theory suggests a strong dependence of Tleaf on environmental drivers. Can this apparent disparity be reconciled? We continuously measured Tleaf and whole-crown net CO2 uptake for Eucalyptus parramattensis trees growing in field conditions in whole-tree chambers under ambient and +3°C warming conditions, and calculated assimilation-weighted leaf temperature (TL-AW ) across 265 d, varying in air temperature (Tair ) from -1 to 45°C. We compared these data to TL-AW derived from wood cellulose δ18 O. Tleaf exhibited substantial variation driven by Tair , light intensity, and vapor pressure deficit, and Tleaf was strongly linearly correlated with Tair with a slope of c. 1.0. TL-AW values calculated from cellulose δ18 O vs crown fluxes were remarkably consistent; both varied seasonally and in response to the warming treatment, tracking variation in Tair . The leaves studied here were nearly poikilothermic, with no evidence of thermoregulation of Tleaf towards a homeostatic value. Importantly, this work supports the use of cellulose δ18 O to infer TL-AW , but does not support the concept of strong homeothermic regulation of Tleaf.


Assuntos
Dióxido de Carbono , Eucalyptus , Árvores , Homeostase , Isótopos de Oxigênio , Fotossíntese , Folhas de Planta , Temperatura
6.
Glob Chang Biol ; 26(4): 2544-2560, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31883292

RESUMO

Understanding how tree growth is affected by rising temperature is a key to predicting the fate of forests in future warmer climates. Increasing temperature has direct effects on plant physiology, but there are also indirect effects of increased water limitation because evaporative demand increases with temperature in many systems. In this study, we experimentally resolved the direct and indirect effects of temperature on the response of growth and photosynthesis of the widely distributed species Eucalyptus tereticornis. We grew E. tereticornis in an array of six growth temperatures from 18 to 35.5°C, spanning the climatic distribution of the species, with two watering treatments: (a) water inputs increasing with temperature to match plant demand at all temperatures (Wincr ), isolating the direct effect of temperature; and (b) water inputs constant for all temperatures, matching demand for coolest grown plants (Wconst ), such that water limitation increased with growth temperature. We found that constant water inputs resulted in a reduction of temperature optima for both photosynthesis and growth by ~3°C compared to increasing water inputs. Water limitation particularly reduced the total amount of leaf area displayed at Topt and intermediate growth temperatures. The reduction in photosynthesis could be attributed to lower leaf water potential and consequent stomatal closure. The reduction in growth was a result of decreased photosynthesis, reduced total leaf area display and a reduction in specific leaf area. Water availability had no effect on the response of stem and root respiration to warming, but we observed lower leaf respiration rates under constant water inputs compared to increasing water inputs at higher growth temperatures. Overall, this study demonstrates that the indirect effect of increasing water limitation strongly modifies the potential response of tree growth to rising global temperatures.

7.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026137

RESUMO

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Assuntos
Gases de Efeito Estufa , Atmosfera , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Reprodutibilidade dos Testes , Respiração , Solo
8.
Physiol Mol Biol Plants ; 26(2): 211-218, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32153324

RESUMO

Heatwaves are becoming more frequent with climate warming and can impact tree growth and reproduction. Eucalyptus parramattensis can cope with an extreme heatwave in the field via transpiratory cooling and enhanced leaf thermal tolerance that protected foliar tissues from photo-inhibition and photo-oxidation during natural midday irradiance. Here, we explored whether changes in foliar carotenoids and/or the xanthophyll cycle state can facilitate leaf acclimation to long-term warming and/or an extreme heatwave event. We found that leaves had similar carotenoid levels when grown for one year under ambient and experimental long-term warming (+ 3 °C) conditions in whole tree chambers. Exposure to a 4-day heatwave (> 43 °C) significantly altered the xanthophyll de-epoxidation state of carotenoids revealing one mechanism by which trees could minimise foliar photo-oxidative damage. The levels of zeaxanthin were significantly higher in both young and old leaves during the heatwave, revealing that violaxanthin de-epoxidation and perhaps de novo zeaxanthin synthesis contributed to enhancement of the xanthophyll cycle state. In a future climate of long-term warming and increased heatwave events, leaves of E. parramattensis will be able to utilise biochemical strategies to alter the xanthophyll cycle state and cope with extreme temperatures under natural solar irradiation.

9.
New Phytol ; 222(3): 1313-1324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840319

RESUMO

Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of CO2 . The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE). We quantified respiratory partitioning of gross primary production (GPP) and CUE of field-grown trees in a long-term warming experiment (+3°C). We delivered a 13 C-CO2 pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns. We documented homeostatic respiratory acclimation of foliar and whole-crown respiration rates; the trees adjusted to experimental warming such that leaf-level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the 13 C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained. Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Aquecimento Global , Árvores/metabolismo , Respiração Celular , Marcação por Isótopo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo/química
10.
New Phytol ; 222(3): 1298-1312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30536971

RESUMO

The allocation of carbon (C) is an important component of tree physiology that influences growth and ecosystem C storage. Allocation is challenging to measure, and its sensitivity to environmental changes such as warming and altered water availability is uncertain. We exposed young Eucalyptus tereticornis trees to +3°C warming and elimination of summer precipitation in the field using whole-tree chambers. We calculated C allocation terms using detailed measurements of growth and continuous whole-crown CO2 and water exchange measurements. Trees grew from small saplings to nearly 9 m height during this 15-month experiment. Warming accelerated growth and leaf area development, and it increased the partitioning of gross primary production (GPP) to aboveground respiration and growth while decreasing partitioning below ground. Eliminating summer precipitation reduced C gain and growth but did not impact GPP partitioning. Trees utilized deep soil water and avoided strongly negative water potentials. Warming increased growth respiration, but maintenance respiration acclimated homeostatically. The increasing growth in the warmed treatment resulted in higher rates of respiration, even with complete acclimation of maintenance respiration. Warming-induced stimulations of tree growth likely involve increased C allocation above ground, particularly to leaf area development, whereas reduced water availability may not stimulate allocation to roots.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Temperatura , Árvores/crescimento & desenvolvimento , Água/metabolismo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Secas , Folhas de Planta/fisiologia , Solo/química
11.
New Phytol ; 222(1): 132-143, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372524

RESUMO

The Kok and Laisk techniques can both be used to estimate light respiration Rlight . We investigated whether responses of Rlight to short- and long-term changes in leaf temperature depend on the technique used to estimate Rlight . We grew Eucalyptus tereticornis in whole-tree chambers under ambient temperature (AT) or AT + 3°C (elevated temperature, ET). We assessed dark respiration Rdark and light respiration with the Kok (RKok ) and Laisk (RLaisk ) methods at four temperatures to determine the degree of light suppression of respiration using both methods in AT and ET trees. The ET treatment had little impact on Rdark , RKok or RLaisk . Although the thermal sensitivities of RKok or RLaisk were similar, RKok was higher than RLaisk . We found negative values of RLaisk at the lowest measurement temperatures, indicating positive net CO2 uptake, which we propose may be related to phosphoenolpyruvate carboxylase activity. Light suppression of Rdark decreased with increasing leaf temperature, but the degree of suppression depended on the method used. The Kok and Laisk methods do not generate the same estimates of Rlight or light suppression of Rdark between 20 and 35°C. Negative rates of RLaisk imply that this method may become less reliable at low temperatures.


Assuntos
Luz , Temperatura , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Escuridão , Células do Mesofilo/fisiologia , Células do Mesofilo/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação
12.
New Phytol ; 222(2): 768-784, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597597

RESUMO

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.


Assuntos
Aclimatação/fisiologia , Fotossíntese/fisiologia , Plantas/metabolismo , Temperatura , Aclimatação/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Modelos Lineares , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plantas/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo
13.
Plant Cell Environ ; 42(12): 3253-3263, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335973

RESUMO

Trees allocate C from sources to sinks by way of a series of processes involving carbohydrate transport and utilization. Yet these dynamics are not well characterized in trees, and it is unclear how these dynamics will respond to a warmer world. Here, we conducted a warming and pulse-chase experiment on Eucalyptus parramattensis growing in a whole-tree chamber system to test whether warming impacts carbon allocation by increasing the speed of carbohydrate dynamics. We pulse-labelled large (6-m tall) trees with 13 C-CO2 to follow recently fixed C through different organs by using compound-specific isotope analysis of sugars. We then compared concentrations and mean residence times of individual sugars between ambient and warmed (+3°C) treatments. Trees dynamically allocated 13 C-labelled sugars throughout the aboveground-belowground continuum. We did not, however, find a significant treatment effect on C dynamics, as sugar concentrations and mean residence times were not altered by warming. From the canopy to the root system, 13 C enrichment of sugars decreased, and mean residence times increased, reflecting dilution and mixing of recent photoassimilates with older reserves along the transport pathway. Our results suggest that a locally endemic eucalypt was seemingly able to adjust its physiology to warming representative of future temperature predictions for Australia.


Assuntos
Isótopos de Carbono/metabolismo , Mudança Climática , Eucalyptus/fisiologia , Açúcares/metabolismo , Árvores/fisiologia , Carbono/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Fatores de Tempo
14.
Plant Cell Environ ; 42(12): 3241-3252, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378950

RESUMO

The triose phosphate utilization (TPU) rate has been identified as one of the processes that can limit terrestrial plant photosynthesis. However, we lack a robust quantitative assessment of TPU limitation of photosynthesis at the global scale. As a result, TPU, and its potential limitation of photosynthesis, is poorly represented in terrestrial biosphere models (TBMs). In this study, we utilized a global data set of photosynthetic CO2 response curves representing 141 species from tropical rainforests to Arctic tundra. We quantified TPU by fitting the standard biochemical model of C3 photosynthesis to measured photosynthetic CO2 response curves and characterized its instantaneous temperature response. Our results demonstrate that TPU does not limit leaf photosynthesis at the current ambient atmospheric CO2 concentration. Furthermore, our results showed that the light-saturated photosynthetic rates of plants growing in cold environments are not more often limited by TPU than those of plants growing in warmer environments. In addition, our study showed that the instantaneous temperature response of TPU is distinct from temperature response of the maximum rate of Rubisco carboxylation. The new formulations of the temperature response of TPU derived in this study may prove useful in quantifying the biochemical limits to terrestrial plant photosynthesis and improve the representation of plant photosynthesis in TBMs.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Luz , Fosfatos/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Trioses/metabolismo , Temperatura
15.
Glob Chang Biol ; 25(5): 1665-1684, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746837

RESUMO

Understanding forest tree responses to climate warming and heatwaves is important for predicting changes in tree species diversity, forest C uptake, and vegetation-climate interactions. Yet, tree species differences in heatwave tolerance and their plasticity to growth temperature remain poorly understood. In this study, populations of four Eucalyptus species, two with large range sizes and two with comparatively small range sizes, were grown under two temperature treatments (cool and warm) before being exposed to an equivalent experimental heatwave. We tested whether the species with large and small range sizes differed in heatwave tolerance, and whether trees grown under warmer temperatures were more tolerant of heatwave conditions than trees grown under cooler temperatures. Visible heatwave damage was more common and severe in the species with small rather than large range sizes. In general, species that showed less tissue damage maintained higher stomatal conductance, lower leaf temperatures, larger increases in isoprene emissions, and less photosynthetic inhibition than species that showed more damage. Species exhibiting more severe visible damage had larger increases in heat shock proteins (HSPs) and respiratory thermotolerance (Tmax ). Thus, across species, increases in HSPs and Tmax were positively correlated, but inversely related to increases in isoprene emissions. Integration of leaf gas-exchange, isoprene emissions, proteomics, and respiratory thermotolerance measurements provided new insight into mechanisms underlying variability in tree species heatwave tolerance. Importantly, warm-grown seedlings were, surprisingly, more susceptible to heatwave damage than cool-grown seedlings, which could be associated with reduced enzyme concentrations in leaves. We conclude that species with restricted range sizes, along with trees growing under climate warming, may be more vulnerable to heatwaves of the future.


Assuntos
Mudança Climática , Eucalyptus/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Florestas , Fotossíntese/fisiologia , Dispersão Vegetal , Folhas de Planta/fisiologia , Especificidade da Espécie , Termotolerância
17.
Glob Chang Biol ; 24(10): 4626-4644, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29804312

RESUMO

Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt ) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.


Assuntos
Clima , Eucalyptus/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Aclimatação , Mudança Climática , Ambiente Controlado , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Temperatura , Árvores/crescimento & desenvolvimento
18.
Glob Chang Biol ; 24(6): 2390-2402, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316093

RESUMO

Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO2 and H2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.


Assuntos
Eucalyptus/fisiologia , Temperatura Alta , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Mudança Climática , Florestas
19.
Ann Bot ; 121(1): 129-141, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29325002

RESUMO

Background and Aims: Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. Methods: To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Key Results: Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. Conclusions: The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees.


Assuntos
Eucalyptus/anatomia & histologia , Árvores/anatomia & histologia , Eucalyptus/fisiologia , Microscopia Eletrônica de Transmissão , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Árvores/fisiologia , Água/metabolismo , Xilema/anatomia & histologia , Xilema/fisiologia
20.
Glob Chang Biol ; 23(12): 5069-5082, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28544671

RESUMO

Impacts of climate warming depend on the degree to which plants are constrained by adaptation to their climate-of-origin or exhibit broad climatic suitability. We grew cool-origin, central and warm-origin provenances of Eucalyptus tereticornis in an array of common temperature environments from 18 to 35.5°C to determine if this widely distributed tree species consists of geographically contrasting provenances with differentiated and narrow thermal niches, or if provenances share a common thermal niche. The temperature responses of photosynthesis, respiration, and growth were equivalent across the three provenances, reflecting a common thermal niche despite a 2,200 km geographic distance and 13°C difference in mean annual temperature at seed origin. The temperature dependence of growth was primarily mediated by changes in leaf area per unit plant mass, photosynthesis, and whole-plant respiration. Thermal acclimation of leaf, stem, and root respiration moderated the increase in respiration with temperature, but acclimation was constrained at high temperatures. We conclude that this species consists of provenances that are not differentiated in their thermal responses, thus rejecting our hypothesis of adaptation to climate-of-origin and suggesting a shared thermal niche. In addition, growth declines with warming above the temperature optima were driven by reductions in whole-plant leaf area and increased respiratory carbon losses. The impacts of climate warming will nonetheless vary across the geographic range of this and other such species, depending primarily on each provenance's climate position on the temperature response curves for photosynthesis, respiration, and growth.


Assuntos
Adaptação Fisiológica , Clima , Eucalyptus/fisiologia , Dióxido de Carbono , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Temperatura , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa