Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930849

RESUMO

Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.


Assuntos
Mudança Climática , Secas , Ecossistema , Florestas , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Árvores/metabolismo , Água/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(31): 18161-18168, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32719142

RESUMO

While tree rings have enabled interannual examination of the influence of climate on trees, this is not possible for most shrubs. Here, we leverage a multidecadal record of annual foliar carbon isotope ratio collections coupled with 39 y of survey data from two populations of the drought-deciduous desert shrub Encelia farinosa to provide insight into water-use dynamics and climate. This carbon isotope record provides a unique opportunity to examine the response of desert shrubs to increasing temperature and water stress in a region where climate is changing rapidly. Population mean carbon isotope ratios fluctuated predictably in response to interannual variations in temperature, vapor pressure deficit, and precipitation, and responses were similar among individuals. We leveraged the well-established relationships between leaf carbon isotope ratios and the ratio of intracellular to ambient CO2 concentrations to calculate intrinsic water-use efficiency (iWUE) of the plants and to quantify plant responses to long-term environmental change. The population mean iWUE value increased by 53 to 58% over the study period, much more than the 20 to 30% increase that has been measured in forests [J. Peñuelas, J. G. Canadell, R. Ogaya, Glob. Ecol. Biogeogr. 20, 597-608 (2011)]. Changes were associated with both increased CO2 concentration and increased water stress. Individuals whose lifetimes spanned the entire study period exhibited increases in iWUE that were very similar to the population mean, suggesting that there was significant plasticity within individuals rather than selection at the population scale.


Assuntos
Asteraceae/fisiologia , Mudança Climática , Água/metabolismo , Dióxido de Carbono , Clima Desértico , Secas
3.
Oecologia ; 199(3): 563-578, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819533

RESUMO

We describe establishment of Encelia farinosa, a drought-deciduous shrub common to the Mojave and Sonoran Deserts, based on annual observations of two populations between 1980 and 2020. Only 11 establishment events of 50 + yearlings (0.02-0.03 individuals m-2) occurred during this monitoring period; in 68% of the years fewer than 10 yearlings were established. Yearling survival to adulthood (age 4) ranged from 88 to 5% and was significantly related to cumulative precipitation. Juvenile survival rates were lowest during the current megadrought period. We calculated intrinsic water-use efficiency (iWUE) and observed the widest variations in iWUE values among the youngest plants. Among juveniles, surviving yearlings with the lowest iWUE values exhibited upward ontogenetic shifts in iWUE values, whereas those yearlings with the highest initial iWUE values exhibited little if any change. Juvenile size, higher iWUE values, and greater likelihood of surviving were all positively related with each other over the past several decades. Furthermore, iWUE and photosynthetic capacity were positively related to each other, providing a mechanistic explanation for why increased iWUE values among juveniles could lead to greater survival rates and to larger plants under water-deficit conditions. We posit that there is bi-directional selection for genotypic variations in iWUE values among E. farinosa and that this variation is selected for because of interannual environmental heterogeneity in precipitation and VPD associated with both high- and low-frequency climate cycles. Extreme drought cycles may favor plants with higher iWUE values, whereas more mesic periods may allow for greater persistence of lower iWUE genotypes.


Assuntos
Asteraceae , Água , Adulto , Dióxido de Carbono , Pré-Escolar , Clima , Secas , Humanos
4.
New Phytol ; 232(3): 1226-1237, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352127

RESUMO

While plant δ15 N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ15 N values from two Mojave Desert populations of Encelia farinosa to clarify sources of population-level variability. We leveraged > 3500 foliar δ15 N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ15 N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ15 N, intra-plant fractionations, and relationships between soil and plant δ15 N values. We observed extensive within-population variability in foliar δ15 N values and found plant age and foliar %N to be the strongest predictors of individual δ15 N values. There were consistent differences between root, stem, and leaf δ15 N values (spanning c. 3‰), but plant and bulk soil δ15 N values were unrelated. Plant-level variables played a strong role in influencing foliar δ15 N values, and interannual relationships between climate and δ15 N values were counter to previously recognized spatial patterns. This long-term record provides insights regarding the interpretation of δ15 N values that were not available from previous large-scale syntheses, broadly enabling more effective application of foliar δ15 N values.


Assuntos
Asteraceae , Nitrogênio , Demografia , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Solo
5.
Oecologia ; 197(4): 1027-1038, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33387007

RESUMO

Plants make leaf-level trade-offs between photosynthetic carbon assimilation and water loss, and the optimal balance between the two is dependent, in part, on water availability. "Conservative" water-use strategies, in which minimizing water loss is prioritized over assimilating carbon, tend to be favored in arid environments, while "aggressive" water-use strategies, in which carbon assimilation is prioritized over water conservation, are often favored in mesic environments. When derived from foliar carbon isotope ratios, intrinsic water-use efficiency (iWUE) serves as a seasonally integrated indicator of the balance of carbon assimilation to water loss at the leaf level. Here, we used a multi-decadal record of annual iWUE, growth, and flowering from a single population of Encelia farinosa in the Mojave Desert to evaluate the effect of iWUE on plant performance across interannual fluctuations in water availability. We identified substantial variability in iWUE among individuals and found that iWUE interacted with water availability to significantly influence growth and flowering. However, the relationships between iWUE, water availability, and plant performance did not universally suggest that "conservative" water-use strategies were advantageous in dry years or that "aggressive" strategies were advantageous in wet years. iWUE was positively related to the odds of growth regardless of water availability and to the odds of flowering in dry years, but negatively related to growth rates in dry years. In addition, we found that leaf nitrogen content affected interannual plant performance and that an individual's iWUE plasticity in response to fluctuations in aridity was negatively related to early life drought survival and growth.


Assuntos
Dióxido de Carbono , Água , Clima , Mudança Climática , Clima Desértico , Secas , Humanos
6.
Rapid Commun Mass Spectrom ; 34(7): e8626, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31658500

RESUMO

RATIONALE: Fraudulent region-of-origin labeling is a concern for high-value, globally traded commodities such as coffee. The oxygen isotope ratio of cellulose is a useful geographic tracer, as it integrates climate and source water signals. A predictive spatial model ("isoscape") of the δ18 O values of coffee bean cellulose is generated to evaluate coffee region-of-origin claims. METHODS: The oxygen isotope ratio of α-cellulose extracted from roasted coffee beans was measured via high-temperature conversion elemental analyzer/isotope ratio mass spectrometry (TC-EA/IRMS) and used to calculate the δ18 O value of coffee bean water. The 18 O enrichment of coffee bean water relative to the δ18 O value of local precipitation was modeled as a function of local temperature and humidity. This function was incorporated into a mechanistic model of cellulose δ18 O values to predict the δ18 O values of coffee bean cellulose across coffee-producing regions globally. RESULTS: The δ18 O values of analyzed coffee bean cellulose ranged from approximately +22‰ to +42‰ (V-SMOW). As expected, coffees grown in the same region tended to have similar isotope ratios, and the δ18 O value of coffee bean cellulose was generally higher than the δ18 O value of modeled stem cellulose for the region. Modeled δ18 O values of coffee cellulose were within ±2.3‰ of the measured δ18 O value of coffee cellulose. CONCLUSIONS: The oxygen isotope ratio of coffee bean cellulose is a useful indicator of region-of-origin and varies predictably in response to climatic factors and precipitation isotope ratios. The isoscape of coffee bean cellulose δ18 O values from this study provides a quantitative tool that can be applied to region-of-origin verification of roasted coffee at the point-of-sale.


Assuntos
Celulose/análise , Coffea/química , Café/química , Isótopos de Oxigênio/análise , Café/provisão & distribuição , Análise de Alimentos , Manipulação de Alimentos , Temperatura Alta , Espectrometria de Massas , Modelos Biológicos , Folhas de Planta/química , Caules de Planta/química , Sementes/química , Água/análise
7.
Nat Commun ; 15(1): 675, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253564

RESUMO

Irrigation reduces crop vulnerability to drought and heat stress and thus is a promising climate change adaptation strategy. However, irrigation also produces greenhouse gas emissions through pump energy use. To assess potential conflicts between adaptive irrigation expansion and agricultural emissions mitigation efforts, we calculated county-level emissions from irrigation energy use in the US using fuel expenditures, prices, and emissions factors. Irrigation pump energy use produced 12.6 million metric tonnes CO2e in the US in 2018 (90% CI: 10.4, 15.0), predominantly attributable to groundwater pumping. Groundwater reliance, irrigated area extent, water demand, fuel choice, and electrical grid emissions intensity drove spatial heterogeneity in emissions. Due to heavy reliance on electrical pumps, projected reductions in electrical grid emissions intensity are estimated to reduce pumping emissions by 46% by 2050, with further reductions possible through pump electrification. Quantification of irrigation-related emissions will enable targeted emissions reduction efforts and climate-smart irrigation expansion.

8.
Nat Food ; 4(8): 654-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37591963

RESUMO

Agricultural irrigation induces greenhouse gas emissions directly from soils or indirectly through the use of energy or construction of dams and irrigation infrastructure, while climate change affects irrigation demand, water availability and the greenhouse gas intensity of irrigation energy. Here, we present a scoping review to elaborate on these irrigation-climate linkages by synthesizing knowledge across different fields, emphasizing the growing role climate change may have in driving future irrigation expansion and reinforcing some of the positive feedbacks. This Review underscores the urgent need to promote and adopt sustainable irrigation, especially in regions dominated by strong, positive feedbacks.


Assuntos
Gases de Efeito Estufa , Retroalimentação , Irrigação Agrícola , Mudança Climática , Conhecimento
9.
Food Chem ; 320: 126602, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222657

RESUMO

Determining coffee region-of-origin is most appropriately addressed through analyses of the product available to the consumer. We analyzed the concentrations of 44 trace elements in 53 samples of roasted Arabica coffee beans (Coffea arabica) from 21 different countries. Variations in absolute elemental concentrations of coffee beans arise through varying degrees of roasting (from green through dark roasts). Since trace elements are not volatilized at roasting temperatures, we conducted analyses of element ratios to evaluate concentration-related differences among beans of different origins. We used kernel density estimates to compare the distributions of 1892 element ratios for each of these countries with the combined distribution of coffee samples from the other countries. Using this quantitative approach, we demonstrated that many of the world's coffee-producing regions can be distinguished from other regions of the world on the basis of element ratios.


Assuntos
Café/química , Geografia , Oligoelementos/análise , Coffea , Café/classificação , Sementes/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa