Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mult Scler ; 28(2): 206-216, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34125626

RESUMO

BACKGROUND: Modifications in brain function remain relatively unexplored in progressive multiple sclerosis (PMS), despite their potential to provide new insights into the pathophysiology of the disease at this stage. OBJECTIVES: To characterize the dynamics of functional networks at rest in patients with PMS, and the relation with clinical disability. METHODS: Thirty-two patients with PMS underwent clinical and cognitive assessment. The dynamic properties of functional networks, retrieved from transient brain activity, were obtained from patients and 25 healthy controls (HCs). Sixteen HCs and 19 patients underwent a 1-year follow-up (FU) clinical and imaging assessment. Differences in the dynamic metrics between groups, their longitudinal changes, and the correlation with clinical disability were explored. RESULTS: PMS patients, compared to HCs, showed a reduced dynamic functional activation of the anterior default mode network (aDMN) and a decrease in its opposite-signed co-activation with the executive control network (ECN), at baseline and FU. Processing speed and visuo-spatial memory negatively correlated to aDMN dynamic activity. The anti-couplings between aDMN and auditory/sensory-motor network, temporal-pole/amygdala, or salience networks were differently associated with separate cognitive domains. CONCLUSION: Patients with PMS presented an altered aDMN functional recruitment and anti-correlation with ECN. The aDMN dynamic functional activity and interaction with other networks explained cognitive disability.


Assuntos
Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Função Executiva/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
2.
Eur J Neurol ; 29(2): 515-521, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34695274

RESUMO

BACKGROUND AND PURPOSE: Cerebellar damage is a valuable predictor of disability, particularly in progressive multiple sclerosis. It is not clear if it could be an equally useful predictor of motor disability worsening in the relapsing-remitting phenotype. AIM: We aimed to determine whether cerebellar damage is an equally useful predictor of motor disability worsening in the relapsing-remitting phenotype. METHODS: Cerebellar lesion loads and volumes were estimated using baseline magnetic resonance imaging from the CombiRx trial (n = 838). The relationship between cerebellar damage and time to disability worsening (confirmed disability progression [CDP], timed 25-foot walk test [T25FWT] score worsening, nine-hole peg test [9HPT] score worsening) was tested in stagewise and stepwise Cox proportional hazards models, accounting for demographics and supratentorial damage. RESULTS: Shorter time to 9HPT score worsening was associated with higher baseline Expanded Disability Status Scale (EDSS) score (hazard ratio [HR] 1.408, p = 0.0042) and higher volume of supratentorial and cerebellar T2 lesions (HR 1.005 p = 0.0196 and HR 2.211, p = 0.0002, respectively). Shorter time to T25FWT score worsening was associated with higher baseline EDSS (HR 1.232, p = 0.0006). Shorter time to CDP was associated with older age (HR 1.026, p = 0.0010), lower baseline EDSS score (HR 0.428, p < 0.0001) and higher volume of supratentorial T2 lesions (HR 1.024, p < 0.0001). CONCLUSION: Among the explored outcomes, single time-point evaluation of cerebellar damage only allows the prediction of manual dexterity worsening. In clinical studies the selection of imaging biomarkers should be informed by the outcome of interest.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Avaliação da Deficiência , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Retrospectivos
3.
Mult Scler ; 27(7): 1102-1111, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32907463

RESUMO

BACKGROUND: Depression is frequently associated with multiple sclerosis (MS). However, the biological background underlying such association is poorly understood. OBJECTIVE: Investigating the functional connections of neurotransmitter-related brainstem nuclei, along with their relationship with white matter (WM) microstructure, in MS patients with depressive symptomatology (MS-D) and without depressive symptomatology (MS-nD). METHODS: Combined resting-state functional magnetic resonance imaging (fMRI) and diffusion-weighted MRI (dMRI) study on 50 MS patients, including 19 MS-D and 31 MS-nD patients, along with 37 healthy controls (HC). Main analyses performed are (1) comparison between groups of raphe nuclei (RN)-related functional connectivity (FC); (2) correlation between RN-related FC and whole brain dMRI-derived fractional anisotropy (FA) map; and (3) comparison between groups of FA in the RN-related WM area. RESULTS: (1) RN-related FC was reduced in MS-D when compared to MS-nD and HC; (2) RN-related FC positively correlated with FA in a WM cluster mainly encompassing thalamic/basal ganglia regions, including the fornix; and (3) FA in such WM area was reduced in MS-D. CONCLUSION: Depressive symptomatology in MS is specifically associated to a functional disconnection of neurotransmitter-related nuclei, which in turn may be traced to a distinct spatial pattern of WM alterations mainly involving the limbic network.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Depressão/etiologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Neurotransmissores , Substância Branca/diagnóstico por imagem
4.
Magn Reson Med ; 77(3): 1115-1123, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26947146

RESUMO

PURPOSE: Phantoms are often used to assess MR system stability in multicenter studies. Postmortem brain phantoms best replicate human brain anatomy, allowing for a combined assessment of the MR system and software chain for data analysis. However, a wash-out of fixative fluid affecting T1 values and thus T1-weighted sequences such as magnetization-prepared 180 degrees radiofrequency pulses and rapid gradient-echo (MP-RAGE) has been reported for brain phantoms, hampering their immediate use. The purpose of this study was the creation of anatomical data that provide the characteristics of conventional data while avoiding this artifact. THEORY AND METHODS: Two brain phantoms were scanned at several time points, acquiring conventional MP-RAGE data and quantitative T1 and proton density (PD) maps. Assuming a suitable cutoff value T1cut , synthetic MP-RAGE data were created from these maps, being T1-weighted for T1 > T1cut to reduce fluid signal in the sulci, but PD-weighted for T1 < T1cut for artifact suppression. RESULTS: A time-dependent artifact was observed in the T1 but not in the PD maps. The temporal stability of the synthetic data was greatly improved as compared to the conventional data. CONCLUSION: The proposed method enables anatomical imaging of postmortem brain phantoms, avoiding artifacts induced by the wash-out of fixative fluid, and thus achieving high signal stability shortly after fixation. Magn Reson Med 77:1115-1123, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Fixadores , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Mudanças Depois da Morte , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Magn Reson Imaging ; 46(5): 1485-1490, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28240801

RESUMO

PURPOSE: Quantitative MRI (qMRI) allows assessing cortical pathology in multiple sclerosis (MS) on a microstructural level, where cortical damage has been shown to prolong T1 -relaxation time and increase proton density (PD) compared to controls. However, the evolution of these changes in MS over time has not been investigated so far. In this pilot study we used an advanced method for the longitudinal assessment of cortical tissue change in MS patients with qMRI in comparison to cortical atrophy, as derived from conventional MRI. MATERIALS AND METHODS: Twelve patients with relapsing-remitting MS underwent 3T T1 /PD-mapping at two timepoints with a mean interval of 12 months. The respective cortical T1 /PD-values were extracted from the middle of the cortical layer and the cortical thickness was measured for surface-based identification of clusters with increasing/decreasing values. RESULTS: Statistical analysis showed clusters with increasing PD- and T1 -values over time (annualized rate for T1 /PD increase in these clusters: 3.4 ± 2.56% for T1 , P = 0.0007; 2.3 ± 2.59% for PD, P = 0.01). Changes are heterogeneous across the cortex and different patterns of longitudinal PD and T1 increase emerged. Analysis of the cortical thickness yielded only one small cluster indicating a decrease of cortical thickness. CONCLUSION: Changes of cortical tissue composition in MS seem to be reflected by a spatially inhomogeneous, multifocal increase of the PD values, indicating replacement of neural tissue by water, and of the T1 -relaxation time, a surrogate of demyelination, axonal loss, and gliosis. qMRI changes were more prominent than cortical atrophy, showing the potential of qMRI techniques to quantify microstructural alterations that remain undetected by conventional MRI. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1485-1490.


Assuntos
Córtex Cerebral/fisiopatologia , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Adulto , Atrofia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Córtex Cerebral/lesões , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto
6.
Mult Scler ; 23(8): 1167-1169, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28417657

RESUMO

BACKGROUND: The role of cortical lesions (CLs) in disease progression and clinical deficits is increasingly recognized in multiple sclerosis (MS); however the origin of CLs in MS still remains unclear. OBJECTIVE: Here, we report a para-sulcal CL detected two years after diagnosis in a relapsing-remitting MS (RRMS) patient without manifestation of clinical deficit. METHODS: Ultra-high field (7T) MR imaging using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) sequence was performed. RESULTS: A para-sulcal CL was detected which showed hypointense rim and iso- to hyperintense core. This was detected in the proximity of the leptomeninges in the left precentral gyrus extending to the adjacent postcentral gyrus. CONCLUSION: This finding indicates that inflammatory infiltration into the cortex through the meninges underlies cortical pathology already in the early stage of disease and in mild disease course.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Meningite/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Córtex Cerebral/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Meningite/complicações , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia
7.
Mult Scler ; 23(3): 432-441, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27246143

RESUMO

BACKGROUND: The pathology of multiple sclerosis (MS) consists of demyelination and neuronal injury, which occur early in the disease; yet, remission phases indicate repair. Whether and how the central nervous system (CNS) maintains homeostasis to counteract clinical impairment is not known. OBJECTIVE: We analyse the structural connectivity of white matter (WM) and grey matter (GM) networks to understand the absence of clinical decline as the disease progresses. METHODS: A total of 138 relapsing-remitting MS patients (classified into six groups by disease duration) and 32 healthy controls were investigated using 3-Tesla magnetic resonance imaging (MRI). Networks were analysed using graph theoretical approaches based on connectivity patterns derived from diffusion-tensor imaging with probabilistic tractography for WM and voxel-based morphometry and regional-volume-correlation matrix for GM. RESULTS: In the first year after disease onset, WM networks evolved to a structure of increased modularity, strengthened local connectivity and increased local clustering while no clinical decline occurred. GM networks showed a similar dynamic of increasing modularity. This modified connectivity pattern mainly involved the cerebellum, cingulum and temporo-parietal regions. Clinical impairment was associated at later disease stages with a divergence of the network patterns. CONCLUSION: Our findings suggest that network functionality in MS is maintained through structural adaptation towards increased local and modular connectivity, patterns linked to adaptability and homeostasis.


Assuntos
Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Rede Nervosa/patologia , Substância Branca/patologia , Adulto , Doenças Desmielinizantes/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/patologia , Adulto Jovem
8.
MAGMA ; 30(1): 75-83, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27544270

RESUMO

OBJECTIVE: Proton density (PD) mapping requires correction for the receive profile (RP), which is frequently performed via bias-field correction. An alternative RP-mapping method utilizes a comparison of uncorrected PD-maps and a value ρ(T1) directly derived from T1-maps via the Fatouros equation. This may be problematic in multiple sclerosis (MS), if respective parameters are only valid for healthy brain tissue. We aimed to investigate whether the alternative method yields correct PD values in MS patients. MATERIALS/METHODS: PD mapping was performed on 27 patients with relapsing-remitting MS and 27 healthy controls, utilizing both methods, yielding reference PD values (PDref, bias-field method) and PDalt (alternative method). RESULTS: PDalt-values closely matched PDref, both for patients and controls. In contrast, ρ(T1) differed by up to 3 % from PDref, and the voxel-wise correlation between PDref and ρ(T1) was reduced in a patient subgroup with a higher degree of disability. Still, discrepancies between ρ(T1) and PDref were almost identical across different tissue types, thus translating into a scaling factor, which cancelled out during normalization to 100 % in CSF, yielding a good agreement between PDalt and PDref. CONCLUSION: RP correction utilizing the auxiliary parameter ρ(T1) derived via the Fatouros equation provides accurate PD results in MS patients, in spite of discrepancies between ρ(T1) and actual PD values.


Assuntos
Encéfalo/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Algoritmos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
9.
NMR Biomed ; 29(4): 444-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820580

RESUMO

T2 relaxation time is a quantitative MRI in vivo surrogate of cerebral tissue damage in multiple sclerosis (MS) patients. Cortical T2 prolongation is a known feature in later disease stages, but has not been demonstrated in the cortical normal appearing gray matter (NAGM) in early MS. This study centers on the quantitative evaluation of the tissue parameter T2 in cortical NAGM in a collective of early MS and clinically isolated syndrome (CIS) patients, hypothesizing that T2 prolongation is already present at early disease stages and variable over space, in line with global and focal inflammatory processes in MS. Additionally, magnetization transfer ratio (MTR) mapping was performed for further characterization of the expected cortical T2 alteration. Quantitative T2 and MTR maps were acquired from 12 patients with CIS and early MS, and 12 matched healthy controls. The lesion-free part of the cortical volume was identified, and the mean T2 and MTR values and their standard deviations within the cortical volume were determined. For evaluation of spatial specificity, cortical lobar subregions were tested separately for differences of mean T2 and T2 standard deviation. We detected significantly prolonged T2 in cortical NAGM in patients. T2 prolongation was found across the whole cerebral cortex and in all individual lobar subregions. Significantly higher standard deviations across the respective region of interest were found for the whole cerebral cortex and all subregions, suggesting the occurrence of spatially inhomogeneous cortical damage in all regions studied. A trend was observed for MTR reduction and increased MTR variability across the whole cortex in the MS group, suggesting demyelination. In conclusion, our results suggest that cortical damage in early MS is evidenced by spatially inhomogeneous T2 prolongation which goes beyond demyelination. Iron deposition, which is known to decrease T2, seems less prominent.


Assuntos
Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Adulto , Estudos de Casos e Controles , Demografia , Feminino , Humanos , Masculino
10.
NMR Biomed ; 29(3): 349-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26756673

RESUMO

Quantitative T1 mapping of brain tissue is frequently based on the variable flip angle (VFA) method, acquiring spoiled gradient echo (GE) datasets at different excitation angles. However, accurate T1 calculation requires a knowledge of the sensitivity profile B1 of the radiofrequency (RF) transmit coil. For an additional derivation of proton density (PD) maps, the receive coil sensitivity profile (RP) must also be known. Mapping of B1 and RP increases the experiment duration, which may be critical when investigating patients. In this work, a method is presented for the direct calculation of B1 and RP from VFA data. Thus, quantitative maps of T1 , PD, B1 and RP can be obtained from only two spoiled GE datasets. The method is based on: (1) the exploitation of the linear relationship between 1/PD and 1/T1 in brain tissue and (2) the assumption of smoothly varying B1 and RP, so that a large number of data points can be fitted across small volume elements where B1 and RP are approximately constant. The method is tested and optimized on healthy subjects. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Prótons , Ondas de Rádio , Adulto , Simulação por Computador , Humanos
11.
J Magn Reson Imaging ; 44(6): 1600-1607, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27153293

RESUMO

PURPOSE: To investigate magnetization transfer ratio (MTR), T1 relaxation time, and proton density (PD) as indicators of gray matter damage in relapsing-remitting multiple sclerosis (RRMS), reflecting different aspects of microstructural damage and as imaging correlates of clinical disability. We aimed to determine which of these parameters may optimally quantify cortical damage, and serve as an imaging surrogate of clinical disability. In this study, cortical values of MTR, a surrogate for demyelination in MS, of PD, reflecting replacement of neural tissue by water, and of T1 , indicating a complex array of microstructural changes, were assessed in a group of RRMS patients in comparison to healthy controls (HC). MATERIALS AND METHODS: 22 RRMS patients with varying disease duration (4.0 ± 6.54 years) and 10 HC received quantitative 3T magnetic resonance imaging (MRI) with MTR, T1 , and PD mapping. We tested for differences in cortical measurements between patients and HC. Additionally, correlation with disability as quantified by the Expanded Disability Status Scale was investigated. RESULTS: Cortical parameter values were significantly altered in the RRMS group, with increased values of T1 (P = 0.008) and PD (P = 0.028) and reduced values of MTR (P = 0.043). Only cortical T1 was correlated with clinical disability measurements (P = 0.001, r = 0.65). Receiver operating characteristic analysis demonstrated the best discriminatory power for T1 (area under the curve 0.79, PD: 0.75, MTR 0.73). CONCLUSION: Out of the parameters studied, cortical T1 is best suited to detect cortical damage as an imaging surrogate of clinical disability in RRMS. J. Magn. Reson. Imaging 2016;44:1600-1607.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Eur Radiol ; 26(8): 2578-86, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26494641

RESUMO

OBJECTIVES: Proton density (PD) and T1 relaxation time are promising quantitative MRI (qMRI) markers of neuronal damage in multiple sclerosis (MS). However, it is unknown whether cortical differences of these parameters between patients and controls exist in the early stages of disease. This study investigates cortical T1 and PD in early MS stages, hypothesizing that these are altered and display a high spatial variability. METHODS: Quantitative T1 and PD mapping was performed on 11 patients with clinically isolated syndrome (CIS)/early MS in remission and 11 healthy controls. The normal appearing cortical gray matter was extracted, lobar regions were identified, and mean values and standard deviations of both parameters were calculated within each region. RESULTS: Increased PD was detected in MS/CIS patients in the cerebral cortex as a whole and all subregions, indicating an increase of water content. Increase of PD variability reached significance in the whole cortex and in the frontal and parietal regions. Longer T1 relaxation times and increased variability were found in the cerebral cortex in all regions studied, indicating a change of microstructural tissue composition that is spatially heterogeneous. CONCLUSIONS: The data show spatially heterogeneous cortical involvement in early MS is reflected in T1 and PD qMRI. KEY POINTS: • Cortical involvement in early MS is reflected in T1/PD quantitative MRI. • The changes are spatially heterogeneous. • Cortical damage goes beyond increased water content.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino
13.
Neuroimage ; 110: 11-21, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595502

RESUMO

Multi-centre MRI studies of the brain are essential for enrolling large and diverse patient cohorts, as required for the investigation of heterogeneous neurological and psychiatric diseases. However, the multi-site comparison of standard MRI data sets that are weighted with respect to tissue parameters such as the relaxation times (T1, T2) and proton density (PD) may be problematic, as signal intensities and image contrasts depend on site-specific details such as the sequences used, imaging parameters, and sensitivity profiles of the radiofrequency (RF) coils. Water or gel phantoms are frequently used for long-term and/or inter-site quality assessment. However, these phantoms hardly mimic the structure, shape, size or tissue distribution of the human brain. The goals of this study were: (1) to validate the long-term stability of a human post-mortem brain phantom, performing quantitative mapping of T1, T2, and PD, and the magnetization transfer ratio (MTR) over a period of 18months; (2) to acquire and analyse data for this phantom and the brain of a healthy control (HC) in a multi-centre study for MRI protocol standardization in four centres, while conducting a voxel-wise as well as whole brain grey (GM) and white matter (WM) tissue volume comparison. MTR, T2, and the quotient of PD in WM and GM were stable in the post-mortem brain with no significant changes. T1 was found to decrease from 267/236ms (GM/WM) to 234/216ms between 5 and 17weeks post embedment, stabilizing during an 18-month period following the first scan at about 215/190ms. The volumetric measures, based on T1-weighted MP-RAGE images obtained at all participating centres, revealed inter- and intra-centre variations in the evaluated GM and WM volumes that displayed similar trends in both the post-mortem brain as well as the HC. At a confidence level of 95%, brain regions such as the brainstem, deep GM structures as well as boundaries between GM and WM tissues were found to be less reproducible than other brain regions in all participating centres. The results demonstrate that a post-mortem brain phantom may be used as a reliable tool for multi-centre MR studies.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/normas , Modelos Anatômicos , Modelos Neurológicos , Estudos Multicêntricos como Assunto/normas , Imagens de Fantasmas/normas , Mudanças Depois da Morte , Idoso , Artefatos , Feminino , Humanos , Reprodutibilidade dos Testes
14.
J Neural Transm (Vienna) ; 122(10): 1465-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25971605

RESUMO

Typical multiple sclerosis (MS) lesions occur in the brain as well as in the spinal cord. However, two extreme magnetic resonance imaging phenotypes appear occasionally: those with predominantly spinal cord lesions (MS + SL) and those with cerebral lesions and no detectable spinal lesions (MS + CL). We assessed whether morphological differences can be found between these two extreme phenotypes. We examined 19 patients with MS + SL, 18 with MS + CL and 20 controls. All subjects were examined using magnetic resonance imaging, including anatomical and diffusion tensor imaging sequences. Voxel-based morphologic and regions of interest-based analyses and tract-based spatial statistics were performed. Patients also underwent neuropsychological testing. Demographic, clinical and neuropsychological characteristics did not differ between MS + SL and MS + CL patients. Patients with MS + SL showed significantly larger putamen volumes than those with MS + CL which correlated negatively with disability. Compared to controls, only MS + CL revealed clear cortical and deep gray matter atrophy, which correlated with cerebral lesion volume. Additionally, extensive white matter microstructural damage was found only in MS + CL compared to MS + SL and controls in the tract-based spatial statistics. Higher putamen volumes in MS + SL could suggest compensatory mechanisms in this area responsible for motor control. Widely reduced fractional anisotropy values in MS + CL were caused by higher cerebral lesion volume and thus presumably stronger demyelination, which subsequently leads to higher global gray matter atrophy.


Assuntos
Esclerose Múltipla/patologia , Putamen/patologia , Medula Espinal/patologia , Adolescente , Adulto , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade , Esclerose Múltipla/psicologia , Testes Neuropsicológicos , Tamanho do Órgão , Estudos Retrospectivos , Adulto Jovem
16.
Brain Sci ; 13(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626568

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rigidity, and resting tremor. While the majority of PD cases are sporadic, approximately 15-20% of cases have a genetic component. Advances in neuroimaging techniques have provided valuable insights into the pathophysiology of PD, including the different genetic forms of the disease. This literature review aims to summarize the current state of knowledge regarding neuroimaging findings in genetic PD, focusing on the most prevalent known genetic forms: mutations in the GBA1, LRRK2, and Parkin genes. In this review, we will highlight the contributions of various neuroimaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI), in elucidating the underlying pathophysiological mechanisms and potentially identifying candidate biomarkers for genetic forms of PD.

17.
Mult Scler Relat Disord ; 69: 104413, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399964

RESUMO

BACKGROUND: Factors driving differences in disease burden between African American and White people with multiple sclerosis (pwMS) remain unclear. Here, we explored whether differences in disability outcomes could be observed after controlling for major sociodemographic factors and comorbidities, and assessed the presence of a possible interaction between MS and race. METHODS: In this cross-sectional study, 120 pwMS within 6 years from disease onset and 82 healthy controls between 18 and 70 years of age, self-identified as either African American or White, were prospectively enrolled. Inclusion criteria for pwMS were: diagnosis of MS according to the revised McDonald criteria, relapsing-remitting phenotype and Expanded Disability Status Scale (EDSS) < 6.5. Study outcomes included: (i) global disability (EDSS); (ii) quantitative mobility and leg function (Timed 25 Foot Walk Test-T25FWT); (iii) quantitative finger dexterity (9-Hole Peg Test-9HPT); (iv) cognitive efficiency and speed performance (Symbol Digit Modalities Test-SDMT). Differences in disability outcomes were assessed employing multivariable linear regression models. Based on their association with MS or disability, covariates included age, gender, race, years of education, total income, body mass index, comorbidities. The interaction between MS and race on disability outcomes was estimated via relative excess risk of interaction and attributable proportion. RESULTS: Accounting for age, gender, total income, education, body mass index and comorbidities, African American pwMS showed significantly worse performances in manual dexterity and cognition than White pwMS (White pwMS coeff. 3.24, 95% CI 1.55, 4.92 vs African American pwMS coeff. 5.52, 95% CI 3.55, 7.48 and White pwMS coeff. -5.87, 95% CI -8.86, -2.87 vs African American pwMS coeff. -7.99, 95% CI -11.58,-4.38). MS and race independently contributed to the observed gradient in disability severity. CONCLUSIONS: Complex social disparities and systemic racism might contribute to clinical heterogeneity in MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/complicações , Estudos Transversais , Negro ou Afro-Americano , Dedos , Brancos , Destreza Motora
18.
Front Aging Neurosci ; 14: 956744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247996

RESUMO

Introduction: Aging affects the interplay between cognition and gait performance. Neuroimaging studies reported associations between gait performance and structural measures; however, functional connectivity (FC) analysis of imaging data can help to identify dynamic neural mechanisms underlying optimal performance. Here, we investigated the effects on divergent cognitive and inter-network FC patterns underlying gait performance during usual (UW) and dual-task (DT) walking. Methods: A total of 115 community-dwelling, healthy participants between 20 and 80 years were enrolled. All participants underwent comprehensive cognitive and gait assessments in two conditions and resting state functional MRI (fMRI) scans. Inter-network FC from motor-related to 6 primary cognitive networks were estimated. Step-wise regression models tested the relationships between gait parameters, inter-network FC, neuropsychological scores, and demographic variables. A threshold of p < 0.05 was adopted for all statistical analyses. Results: UW was largely associated with FC levels between motor and sustained attention networks. DT performance was associated with inter-network FC between motor and divided attention, and processing speed in the overall group. In young adults, UW was associated with inter-network FC between motor and sustained attention networks. On the other hand, DT performance was associated with cognitive performance, as well as inter-network connectivity between motor and divided attention networks (VAN and SAL). In contrast, the older age group (> 65 years) showed increased integration between motor, dorsal, and ventral attention, as well as default-mode networks, which was negatively associated with UW gait performance. Inverse associations between motor and sustained attention inter-network connectivity and DT performance were observed. Conclusion: While UW relies on inter-network FC between motor and sustained attention networks, DT performance relies on additional cognitive capacities, increased motor, and executive control network integration. FC analyses demonstrate that the decline in cognitive performance with aging leads to the reliance on additional neural resources to maintain routine walking tasks.

19.
J Neurol Sci ; 442: 120452, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265263

RESUMO

The mechanisms underlying cognitive disturbances in Parkinson's disease (PD) are poorly understood but likely to depend on the ongoing degenerative processes affecting structural and functional connectivity (FC). This pilot study examined patterns of FC alterations during a cognitive task using EEG and structural characteristics of white matter (WM) pathways connecting these activated regions in early-stage PD. Eleven PD patients and nine healthy controls (HCs) underwent EEG recording during an auditory oddball task and MRI scans. Source localization was performed and Gaussian mixture model was fitted to identify brain regions with high power during task performance. These areas served as seed regions for connectivity analysis. FC among these regions was assessed by measures of magnitude squared coherence (MSC), and phase-locking value (PLV), while structural connectivity was evaluated using fiber tracking based on diffusion tensor imaging (DTI). The paracentral lobule (PL), superior parietal lobule (SPL), superior and middle frontal gyrus (SMFG), parahippocampal gyrus, superior and middle temporal gyri (STG, MTG) demonstrated increased activation during task performance. Compared to HCs, PD showed lower FC between SMFG and PL and between SMFG and SPL in MSC (p = 0.012 and p = 0.036 respectively). No significant differences between the groups were observed in PLV and the measured DTI metrics along WM tracts. These findings demonstrate that in early PD, cognitive performance changes might be attributed to FC alterations, suggesting that FC is affected early on in the degenerative process, whereas structural damage is more prominent in advanced stages as a result of the disease burden accumulation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Imagem de Tensor de Difusão , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
20.
Sci Rep ; 12(1): 20316, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434008

RESUMO

Numerous studies indicate a significant role of pre-frontal circuits (PFC) connectivity involving attentional and reward neural networks within attention deficit hyperactivity disorder (ADHD) pathophysiology. To date, the neural mechanisms underlying the utility of non-invasive frequency-specific training systems in ADHD remediation remain underexplored. To address this issue, we created a portable electroencephalography (EEG)-based wireless system consisting of a novel headset, electrodes, and neuro program, named frequency specific cognitive training (FSCT). In a double-blind, randomized, controlled study we investigated the training effects in N = 46 school-age children ages 6-18 years with ADHD. 23 children in experimental group who underwent FCST training showed an increase in scholastic performance and meliorated their performance on neuropsychological tests associated with executive functions and memory. Their results were compared to 23 age-matched participants who underwent training with placebo (pFSCT). Electroencephalogram (EEG) data collected from participants trained with FSCT showed a significant increase in 14-18 Hz EEG frequencies in PFC brain regions, activities that indicated brain activation in frontal brain regions, the caudate nucleus, and putamen. These results demonstrate that FSCT targets specific prefrontal and striatal areas in children with ADHD, suggesting a beneficial modality for non-invasive modulation of brain areas implicated in attention and executive functions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Mapeamento Encefálico , Criança , Humanos , Adolescente , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa