RESUMO
Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.
Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Ligantes , Descoberta de Drogas/métodos , Humanos , Proteínas/química , Proteínas/metabolismo , Aprendizado de Máquina , Sítios de Ligação , Desenho de FármacosRESUMO
KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.
Assuntos
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Canais Iônicos , Potássio/metabolismo , Rhinosporidium/químicaRESUMO
ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.
Assuntos
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Ativação do Canal Iônico , Animais , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Optogenética , Filogenia , Ratos Sprague-Dawley , Bases de Schiff/química , Células Sf9 , Relação Estrutura-AtividadeRESUMO
Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.
Assuntos
Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Arrestina/química , Simulação por Computador , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Análise EspectralRESUMO
"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.
Assuntos
Angiotensinas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina/metabolismo , Arrestinas/metabolismo , Linhagem Celular , Humanos , Ligantes , Conformação Proteica , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Espectroscopia de Perda de Energia de Elétrons/métodos , beta-Arrestinas/metabolismoRESUMO
Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Gi activation by CB1. Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in Gi. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.
Assuntos
Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Microscopia Crioeletrônica/métodos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Indazóis/farmacologia , Ligantes , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacosRESUMO
Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.
Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Bactérias/classificação , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated ß-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP.
Assuntos
Dietilamida do Ácido Lisérgico/química , Receptor 5-HT2B de Serotonina/química , Arrestina/química , Cristalografia por Raios X , Humanos , Cinética , Modelos Químicos , Simulação de Dinâmica MolecularRESUMO
The phosphorylation of agonist-occupied G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) functions to turn off G-protein signaling and turn on arrestin-mediated signaling. While a structural understanding of GPCR/G-protein and GPCR/arrestin complexes has emerged in recent years, the molecular architecture of a GPCR/GRK complex remains poorly defined. We used a comprehensive integrated approach of cross-linking, hydrogen-deuterium exchange mass spectrometry (MS), electron microscopy, mutagenesis, molecular dynamics simulations, and computational docking to analyze GRK5 interaction with the ß2-adrenergic receptor (ß2AR). These studies revealed a dynamic mechanism of complex formation that involves large conformational changes in the GRK5 RH/catalytic domain interface upon receptor binding. These changes facilitate contacts between intracellular loops 2 and 3 and the C terminus of the ß2AR with the GRK5 RH bundle subdomain, membrane-binding surface, and kinase catalytic cleft, respectively. These studies significantly contribute to our understanding of the mechanism by which GRKs regulate the function of activated GPCRs. PAPERCLIP.
Assuntos
Quinase 5 de Receptor Acoplado a Proteína G/química , Mamíferos/metabolismo , Receptores Adrenérgicos beta 2/química , Animais , Camelídeos Americanos , Bovinos , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Espectrometria de Massas , Microscopia Eletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Ratos , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismoRESUMO
G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.
Assuntos
Arrestinas/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Cromatografia Líquida , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Ratos , Rodopsina/metabolismo , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Raios XRESUMO
Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.
Assuntos
Colesterol/metabolismo , Simulação de Dinâmica Molecular , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos QuímicosRESUMO
The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.
Assuntos
Cálcio/metabolismo , Calmodulina/química , Quinase 5 de Receptor Acoplado a Proteína G/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera , Especificidade por Substrato , TermodinâmicaRESUMO
G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the ß(2)-adrenergic receptor (ß(2)AR), a prototypical GPCR. We labeled ß(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for ß(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for ß(2)AR's ability to engage multiple signaling and regulatory proteins.
Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Transdução de Sinais , TermodinâmicaRESUMO
Glucose is a primary energy source in living cells. The discovery in 1960s that a sodium gradient powers the active uptake of glucose in the intestine1 heralded the concept of a secondary active transporter that can catalyse the movement of a substrate against an electrochemical gradient by harnessing energy from another coupled substrate. Subsequently, coupled Na+/glucose transport was found to be mediated by sodium-glucose cotransporters2,3 (SGLTs). SGLTs are responsible for active glucose and galactose absorption in the intestine and for glucose reabsorption in the kidney4, and are targeted by multiple drugs to treat diabetes5. Several members within the SGLT family transport key metabolites other than glucose2. Here we report cryo-electron microscopy structures of the prototypic human SGLT1 and a related monocarboxylate transporter SMCT1 from the same family. The structures, together with molecular dynamics simulations and functional studies, define the architecture of SGLTs, uncover the mechanism of substrate binding and selectivity, and shed light on water permeability of SGLT1. These results provide insights into the multifaceted functions of SGLTs.
Assuntos
Microscopia Crioeletrônica , Glucose , Glucose/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/ultraestrutura , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/química , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/ultraestrutura , Especificidade por SubstratoRESUMO
Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.
Assuntos
Microscopia Crioeletrônica , Imunoglobulinas Estimuladoras da Glândula Tireoide , Receptores da Tireotropina , Tireotropina , Membrana Celular/metabolismo , Doença de Graves/imunologia , Doença de Graves/metabolismo , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/química , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/farmacologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/ultraestrutura , Fosfolipídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/química , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/ultraestrutura , Rotação , Tireotropina/química , Tireotropina/metabolismo , Tireotropina/farmacologiaRESUMO
The mutation and overexpression of the epidermal growth factor receptor (EGFR) are associated with the development of a variety of cancers, making this prototypical dimerization-activated receptor tyrosine kinase a prominent target of cancer drugs. Using long-timescale molecular dynamics simulations, we find that the N lobe dimerization interface of the wild-type EGFR kinase domain is intrinsically disordered and that it becomes ordered only upon dimerization. Our simulations suggest, moreover, that some cancer-linked mutations distal to the dimerization interface, particularly the widespread L834R mutation (also referred to as L858R), facilitate EGFR dimerization by suppressing this local disorder. Corroborating these findings, our biophysical experiments and kinase enzymatic assays indicate that the L834R mutation causes abnormally high activity primarily by promoting EGFR dimerization rather than by allowing activation without dimerization. We also find that phosphorylation of EGFR kinase domain at Tyr845 may suppress the intrinsic disorder, suggesting a molecular mechanism for autonomous EGFR signaling.
Assuntos
Receptores ErbB/química , Receptores ErbB/genética , Neoplasias/metabolismo , Mutação Puntual , Transdução de Sinais , Sequência de Aminoácidos , Cristalografia por Raios X , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Lapatinib , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Dobramento de Proteína , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Estrutura Terciária de Proteína , Quinazolinas/farmacologia , Alinhamento de SequênciaRESUMO
MFSD2A is a sodium-dependent lysophosphatidylcholine symporter that is responsible for the uptake of docosahexaenoic acid into the brain1,2, which is crucial for the development and performance of the brain3. Mutations that affect MFSD2A cause microcephaly syndromes4,5. The ability of MFSD2A to transport lipid is also a key mechanism that underlies its function as an inhibitor of transcytosis to regulate the blood-brain barrier6,7. Thus, MFSD2A represents an attractive target for modulating the permeability of the blood-brain barrier for drug delivery. Here we report the cryo-electron microscopy structure of mouse MFSD2A. Our structure defines the architecture of this important transporter, reveals its unique extracellular domain and uncovers its substrate-binding cavity. The structure-together with our functional studies and molecular dynamics simulations-identifies a conserved sodium-binding site, reveals a potential lipid entry pathway and helps to rationalize MFSD2A mutations that underlie microcephaly syndromes. These results shed light on the critical lipid transport function of MFSD2A and provide a framework to aid in the design of specific modulators for therapeutic purposes.
Assuntos
Barreira Hematoencefálica/metabolismo , Metabolismo dos Lipídeos , Simportadores/química , Simportadores/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Sódio/metabolismo , Simportadores/genética , Simportadores/ultraestruturaRESUMO
Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.
Assuntos
Encéfalo , Cálcio , Animais , Camundongos , Iluminação , Microscopia , FótonsRESUMO
The serum level of iron in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing the internalization and degradation of ferroportin1. Aberrant ferroportin activity can lead to diseases of iron overload, such as haemochromatosis, or iron limitation anaemias2. Here we determine cryogenic electron microscopy structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with hepcidin and the iron mimetic cobalt. These structures and accompanying molecular dynamics simulations identify two metal-binding sites within the N and C domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy terminus of hepcidin directly contacts the divalent metal in the ferroportin C domain. Hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, in which only ferroportin molecules loaded with iron are targeted for degradation. More broadly, our structural and functional insights may enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.
Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Microscopia Crioeletrônica , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Proteínas de Transporte de Cátions/ultraestrutura , Cobalto/química , Cobalto/metabolismo , Hepcidinas/química , Humanos , Ferro/química , Simulação de Dinâmica Molecular , Domínios Proteicos , ProteóliseRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.