RESUMO
Milk serves as an important dietary source of bioactive peptides, offering notable benefits to individuals. Among the antioxidant short peptides (di- and tripeptides) generated from gastrointestinal digestion are characterized by enhanced bioavailability and bioaccessibility, while assessing them individually presents a labor-intensive and expensive challenge. Based on 4 distinct types of amino acid descriptors (physicochemical, 3D structural, quantum, and topological attributes) and genetic algorithms for feature selection, 1 and 4 machine learning predicted models separately for di- and tripeptides with ABTS radical scavenging capacity exhibited excellent fitting and prediction ability with random forest regression as machine learning algorithm. Intriguingly, the electronic properties of N-terminal amino acid were considered as only factor affecting the antioxidant capacity of dipeptides containing both tyrosine and tryptophan. Four peptides from the potential di- and tripeptides exhibited highly predicted values by the constructed predicted models. Subsequently, a total of 45 dipeptides and 52 tripeptides were screened by a customized workflow in goat milk during in vitro simulated digestion. In addition to 5 known antioxidant dipeptides, 9 peptides were quantified during digestion, falling within the range of 0.04 to 1.78 mg L-1. Particularly noteworthy was the promising in vivo functionality of antioxidant dipeptides with N-terminal tyrosine, supported by in silico assays. Overall, this investigation explored crucial molecular properties influencing antioxidant short peptides and high-throughput screening potential peptides with antioxidant activity from goat milk aided by machine learning, thereby facilitating the identification of novel bioactive peptides from milk-derived proteins and paving the way for understanding their metabolites during digestion.
RESUMO
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Assuntos
Celulose , Análise de Alimentos , Inocuidade dos Alimentos , Papel , Inocuidade dos Alimentos/métodos , Celulose/química , Celulose/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Espectrometria de Massas/métodosRESUMO
OBJECTIVES: Albuminuria and serum adiponectin levels are factors that have been associated with the development of cardiovascular disease in patients with diabetes mellitus. Here we investigated the relationship between serum adiponectin levels and aortic stiffness in nondialysis diabetic kidney disease patients with stage 3-5 chronic kidney disease. METHODS: Fasting blood samples were obtained from 80 nondialysis diabetic kidney disease patients with stage 3-5 chronic kidney disease. Carotid-femoral pulse wave velocity (cfPWV) was measured using applanation tonometry; cfPWV values of >10 m/s were defined as aortic stiffness. Serum adiponectin levels were determined by enzyme immunoassay. RESULTS: Forty-two patients (52.5%) with nondialysis diabetic kidney disease were diagnosed with aortic stiffness. The patients in this group were older (p = 0.011), had higher systolic blood pressure (p = 0.002) and urine albumin-to-creatinine ratios (p = 0.013), included fewer females (p = 0.024), and had lower serum adiponectin (p = 0.001) levels than those in the control group. Multivariable logistic regression analysis revealed that serum adiponectin was independently associated with aortic stiffness (odds ratio = 0.930, 95% confidence interval: 0.884-0.978, p = 0.005) and also positively correlated with cfPWV values by multivariable linear regression (ß = -0.309, p = 0.002) in nondialysis diabetic kidney disease patients. CONCLUSIONS: The results suggested that serum adiponectin levels could be used to predict aortic stiffness in nondialysis diabetic kidney disease patients with stage 3-5 chronic kidney disease.
Assuntos
Diabetes Mellitus , Falência Renal Crônica , Rigidez Vascular , Adiponectina/deficiência , Feminino , Humanos , Masculino , Erros Inatos do Metabolismo , Análise de Onda de PulsoRESUMO
Nonribosomal peptide synthesis in bacteria has endowed cyclic peptides with fascinating structural complexity via incorporating nonproteinogenic amino acids. These bioactive cyclic peptides provide interesting structural motifs for exploring total synthesis and medicinal chemistry studies. Cyclic glycopeptide mannopeptimycins exhibit antibacterial activity against antibiotic-resistant Gram-positive pathogens and act as the lipid II binder to stop bacterial cell wall biosynthesis. Here, we report a strategy streamlining solution phase-solid phase synthesis and chemical ligation-mediated peptide cyclization for the total synthesis of mannopeptimycin ß.
Assuntos
Aminoácidos/química , Glicopeptídeos/síntese química , Imidazolidinas/química , Glicopeptídeos/química , Estrutura MolecularRESUMO
We report a Monte-Carlo simulation of the formation of skyrmions under a rotary magnetic field on a nanotube. The zero-field magnetic state is characterized as helical stripe domains swirling on the nanotube, with one to three periods depending on the ratio of Dzyaloshinskii-Moriya to ferromagnetic interaction and tubular size. Under a rotary magnetic field, the formation of skyrmions is in pair and the skyrmion number can be tuned. The movement of skyrmions is neither synchronous along with the rotary field, nor along a helical trajectory perpendicular to the rotary field. It is ascribed to that within a skyrmion pair, on one hand, the coupling between skyrmions is nonnegligible; on the other hand, different skyrmion pairs side by side are decoupled. This work predicts a way of nanotube-based skyrmion manipulation, and might develop the rotary information storage on energy- and space-saving modes or an edgeless racetrack memory.
RESUMO
Artificial sensory substitution systems can mimic human sensory organs through replacing the sensing process of a defective sensory receptor and transmitting the sensing signal into the nervous system. Here, we report a self-powered flexible gustation sour sensor for detecting ascorbic acid concentration. The material system comprises of Na2C2O4-Ppy with AAO modification, PDMS and Cu wire mesh. The working mechanism is contributed to the triboelectrification/enzymatic-reaction coupling effect, and the device can collect weak energy from body movements and directly output triboelectric current without any external power-units. The triboelectric output is affected by AA concentration, and the response is up to 34.82% against 15.625 mM/L of AA solution. Furthermore, a practical application in detecting ascorbic acid concentration of different drinks has been demonstrated. This work can encourage the development of wearable flexible electronics and this self-powered sour sensor has the potential that can be acted as a kind of gustatory receptors to build electronic tongues.
Assuntos
Fontes de Energia Elétrica , Paladar , Ácido Ascórbico , Eletrônica , Humanos , Próteses e ImplantesRESUMO
We improve the test of the gravitational inverse-square law at the submillimeter range by suppressing the vibration of the electrostatic shielding membrane to reduce the disturbance coupled from the residual surface potential. The result shows that, at a 95% confidence level, the gravitational inverse-square law holds (|α|≤1) down to a length scale λ=48 µm. This work establishes the strongest bound on the magnitude α of the Yukawa violation in the range of 40-350 µm, and improves the previous bounds by up to a factor of 3 at the length scale λ≈70 µm. Furthermore, the constraints on the power-law potentials are improved by about a factor of 2 for k=4 and 5.
RESUMO
We report on a study on the spin glass (SG) anisotropy (K SG) and interfacial exchange coupling (J IF) dependent coercivity (H C) at the ferromagnet/SG interface, based on a modified Monte Carlo Metropolis algorithm. It is shown that K SG and J IF are interdependent while taking effect on different magnetic degrees of freedom and different time scales, resulting in complicated H C behaviors. By means of a micromagnetic approximation approach, we analytically explain the H C behaviors with respect to K SG and J IF. The dynamic SG surplus magnetization and the SG spin rotatability at the interface, hard to be detected experimentally, have proven to play crucial roles. This paper elucidates the weak anisotropy dependence of SG magnetic properties, and predicts that the SG features can be tunable at will by precisely controlling the magnetic parameters.
RESUMO
In ferromagnet/antiferromagnet bilayers and core/shell nanoparticles, an exchange-bias-like loop bias phenomenon in the ferromagnet is observed solely due to the long-range dipolar interactions between ferromagnet and antiferromagnet. With increasing cooling field, the loop bias field may increase from zero in the bilayers or from a negative value in the core/shell nanoparticles to a positive saturated value, depending on the interfacial dipolar interaction and/or ferromagnetic/antiferromagnetic thickness. Using a modified Monte-Carlo method and the Meiklejohn-Bean model, the interfacial dipole fields (up to several teslas) and the domain sizes imprinted on the interfacial antiferromagnet are explicitly calculated to elucidate the cooling field dependence of loop bias, which is governed by distinct mechanisms at the flat and curved interfaces. Finally, through simply discussing the roles of lattice structure, ferromagnetic dipolar interaction, and simulation time, it is evidenced that the dipole-induced loop bias is ubiquitous and applicable for stabilizing a ferromagnet, irrespective of the interface mismatch and the undeterministic diffusion between different ingredients. This work helps us to develop the spintronic devices with nonatomic-contact nanostructure assemblies.
RESUMO
The Lemnaceae, known as duckweed, the smallest flowering aquatic plant, shows promise as a plant bioreactor. For applying this potential plant bioreactor, establishing a stable and efficient genetic transformation system is necessary. The currently favored callus-based method for duckweed transformation is time consuming and genotype limited, as it requires callus culture and regeneration, which is inapplicable to many elite duckweed strains suitable for bioreactor exploitation. In this study, we attempted to establish a simple frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor, one of the most widespread duckweed species in the world. To evaluate the feasibility of the new transformation system, the gene CYP710A11 was overexpressed to improve the yield of stigmasterol, which has multiple medicinal purposes. Three L. minor strains, ZH0055, D0158 and M0165, were transformed by both a conventional callus transformation system (CTS) and the simple frond transformation system (FTS). GUS staining, PCR, quantitative PCR and stigmasterol content detection showed that FTS can produce stable transgenic lines as well as CTS. Moreover, compared to CTS, FTS can avoid the genotype constraints of callus induction, thus saving at least half of the required processing time (CTS took 8-9 months while FTS took approximately 3 months in this study). Therefore, this transformation system is feasible in producing stable transgenic lines for a wide range of L. minor genotypes.
Assuntos
Agrobacterium tumefaciens/genética , Alismatales/genética , Engenharia Genética/métodos , Alismatales/metabolismo , Reatores Biológicos , Sistema Enzimático do Citocromo P-450/genética , Vetores Genéticos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Estigmasterol/metabolismo , Transformação Genética/genéticaRESUMO
We aim to test whether the association between glucose control and cognitive function still holds true in elderly patients with diabetes mellitus (DM) and Alzheimer disease (AD) under health-care case management. We enrolled 100 patients with DM (mean age: 74.6 years; male: 49%) and 102 patients with AD (mean age: 77.9 years; male: 41.2%) consecutively from the Diabetes Shared Care Program and the memory clinic. These patients were followed up every 3 months with scheduled examinations. Most patients with AD were at early stage and DM was a common comorbidity (n = 42). In the DM group, there were 76 patients with subjective cognitive decline and 19 patients with mild cognitive impairment, but none sought further consultation. After adjusting for age, sex, education, and comorbidity, higher levels of glycated hemoglobin (HbA1C) were not associated with lower Mini-Mental State Examination (MMSE) scores in the DM group (coefficient: 0.03; 95% confidence interval [CI]: -0.44 to 0.50) and lower MMSE scores were not associated with higher HbA1C in the AD group either (coefficient: -0.05; 95% CI: -0.11 to 0.01). When additionally accounting for the variability of HbA1C in the DM group, higher standard deviation of HbA1C was associated with poor clock drawing test scores, but not MMSE. The coexistence of AD-DM was common, but the association between hyperglycemia and cognitive impairment was not seen in patients under regular health monitoring.
Assuntos
Glicemia/metabolismo , Administração de Caso/normas , Disfunção Cognitiva/complicações , Complicações do Diabetes/complicações , Diabetes Mellitus/psicologia , Idoso , Comorbidade , Feminino , Humanos , MasculinoRESUMO
Dynamitin (Dmn) is a major component of dynactin, a multiprotein complex playing important roles in a variety of intracellular motile events. We previously found that Wolbachia bacterial infection resulted in a reduction of Dmn protein. As Wolbachia may modify sperm in male hosts, we speculate that Dmn may have a function in male fertility. Here we used nosGal4 to drive Dmn knock down in testes of Drosophila melanogaster to investigate the functions of Dmn in spermatogenesis. We found that knockdown of Dmn in testes dramatically decreased male fertility, overexpression of Dmn in Wolbachia-infected males significantly rescued male fertility, indicating an important role of Dmn in inducing male fertility defects following Wolbachia infection. Some scattered immature sperm with late canoe-shaped head distributed in the end of Dmn knockdown testis and only about half mature sperm were observed in the Dmn knockdown testis relative to those in the control. Transmission electron microscopy (TEM) exhibited fused spermatids in cysts and abnormal mitochondrial derivatives. Immunofluorescence staining showed significantly less abundance of tubulin around the nucleus of spermatid and scattered F-actin cones to different extents in the individualization complex (IC) during spermiogenesis in Dmn knockdown testes, which may disrupt the nuclear condensation and sperm individualization. Since dynein-dynactin complex has been shown to mediate transport of many cellular components, including mRNAs and organelles, these results suggest that Dmn may play an important role in Drosophila spermiogenesis by affecting transport of many important cytoplasmic materials.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Filamentos Intermediários/metabolismo , Testículo/fisiologia , Animais , Núcleo Celular/metabolismo , Dineínas/metabolismo , Fertilidade , Regulação da Expressão Gênica , Masculino , Mitocôndrias/metabolismo , Espermátides/metabolismo , Espermatogênese , Tubulina (Proteína)/metabolismoRESUMO
Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported.
Assuntos
Antibacterianos/química , Daptomicina/análogos & derivados , Ácido Glutâmico/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Daptomicina/síntese química , Daptomicina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
By using a torsion pendulum and a rotating eightfold symmetric attractor with dual modulation of both the interested signal and the gravitational calibration signal, a new test of the gravitational inverse-square law at separations down to 295 µm is presented. A dual-compensation design by adding masses on both the pendulum and the attractor was adopted to realize a null experiment. The experimental result shows that, at a 95% confidence level, the gravitational inverse-square law holds (|α|≤1) down to a length scale λ=59 µm. This work establishes the strongest bound on the magnitude α of Yukawa-type deviations from Newtonian gravity in the range of 70-300 µm, and improves the previous bounds by up to a factor of 2 at the length scale λ≈160 µm.
RESUMO
Harmful Maillard reaction products (HMRPs) derived from brown fermented milk pose a potential threat to human health, but the conversion mechanism during the manufacturing process remains elusive and urgently needs to be controlled. Acrylamide (FC 2.14, adjusted p-value = 0.041), 5-hydroxymethylfurfural (FC 2.61, adjusted p-value = 0.026) and methylglyoxal (FC 2.07, adjusted p-value = 0.019) were identified as the significantly increased HMRPs after browning in this study and the analysis of proteomics integrated with untargeted metabolomics demonstrated that the degradation of HMRPs was jointly accomplished by Streptococcus thermophilus and Lactobacillus bulgaricus. The galactose oligosaccharide metabolism in Streptococcus thermophilus was identified as a key biochemical reaction for HMRPs degradation, and the hydrolysates of pectin could be utilized as prebiotics for Streptococcus thermophilus. Eighteen classes of enzymes of L. bulgaricus and Streptococcus thermophilus related to energy metabolism were upregulated in the pectin-added group, indicating that the entry of acrylamide and methylglyoxal into the tricarboxylic acid cycle was accelerated. NAD-aldehyde dehydrogenase and alanine dehydrogenase are enzymes belonging to Streptococcus thermophilus, and their downregulation accelerated the efflux of acetate, which was beneficial for the proliferation of L. bulgaricus and prevented the conversion of pyruvate to l-alanine, thus facilitating the energy metabolism. The recoveries and relative standard deviations of the intraday and interday precision experiments were 89.1%-112.5%, 1.3%-8.4% and 2.1%-9.4%, respectively, indicating that the developed approach was credible. Sensory evaluation results revealed that the brown fermented milk added with pectin had a better flavor, which was due to the fact that the supplement of polysaccharide promoted the fatty acid metabolism of lactic acid bacteria and increased the aroma substances including octoic acid and valeric acid. This study provided an insight into the formation and degradation mechanism of HMRPs in brown fermented milk, aiming to reduce the intake of advanced glycation end products in the diet.
RESUMO
An important method that coal-fired power plants use to realise low-cost zero discharge of desulfurisation wastewater (FGD wastewater) is to utilise wet slag removal systems. However, the high Cl- content of FGD wastewater in wet slag removal systems causes environmental damage. In this study, the corrosion behaviour of the inner guide wheel material, 20CrMnTi, was studied using dynamic weight loss and electrochemical methods. X-ray diffraction, scanning electron microscopy, and energy spectroscopy were used to analyse the organisational and phase changes on the surfaces and cross sections of the samples at different Cl- concentrations. The corrosion rate increased with the Cl- concentration up to 20 g/L, but it decreased slightly when the Cl- concentration exceeded 20 g/L. In all the cases, the corrosion rate exceeded 0.8 mm/a. The corrosion product film density initially increased and then decreased as the Cl- concentration increased. The corrosion products comprised mainly α-FeOOH, γ-FeOOH, ß-FeOOH, Fe3O4, and γ-Fe2O3.
RESUMO
Circulating 25-hydroxyvitamin D (25(OH)D) significantly influences endothelial function. This study assessed the correlation between serum 25(OH)D and endothelial function using the vascular reactivity index (VRI) in patients with type 2 diabetes mellitus (T2DM). Fasting blood samples from 102 T2DM participants and VRI were assessed. Patients were divided into three categories based on VRI: low (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0). Among these patients, 30 (29.4%) had poor, 39 (38.2%) had intermediate, and 33 (32.4%) exhibited good vascular reactivity. Higher serum fasting glucose (p = 0.019), glycated hemoglobin (p = 0.009), and urinary albumin-to-creatinine ratio (p = 0.006) were associated, while lower prevalence of hypertension (p = 0.029), lower systolic blood pressure (p = 0.027), lower diastolic blood pressure (p < 0.001), and lower circulation 25(OH)D levels (p < 0.001) were associated with poor vascular reactivity. Significant independent associations between diastolic blood pressure (p = 0.002) and serum 25(OH)D level (p < 0.001) and VRI were seen in T2DM patients according to multivariable forward stepwise linear regression analysis. Serum 25(OH)D positively correlated with VRI values, and lower levels of serum 25(OH)D were linked to endothelial dysfunction in T2DM patients.
Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular , Vitamina D , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Vitamina D/análogos & derivados , Vitamina D/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Endotélio Vascular/fisiopatologia , Pressão Sanguínea , Estudos Transversais , Glicemia/análise , Glicemia/metabolismo , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Hipertensão/sangueRESUMO
Antioxidant peptides have received a great deal of attention. However, only a few studies have been conducted on the antioxidant peptides originating from Baijiu. A total of 1490 features deemed potential short-chain peptides (the amino acid number between 2 and 4, SCPs) were screened and analyzed by a customized short-chain peptidomics approach in Feng-flavor Baijiu (FFB) during 14 years of aging, with an obvious discrepancy between FFB aged for 3 years and 6 years being observed. Thirty-nine characteristic SCPs in total were identified and accurately quantified by high-throughput parallel reaction monitoring-based synthetic standards, with the contents ranging from 0.16 to 279.33 µg L-1. Combined with the absorption, distribution, metabolism, excretion, and toxicity analysis model, PGRW, WK, SC, and PAW, four novel antioxidant peptides with high ABTS radical scavenging capacity, were obtained using a customized quantitative structure-activity relationship (QSAR) model based on a two terminal position numbering method, with satisfied coefficients of determination (R2), internal cross-validated R2 (Q2), and external R2 (R2pre) of 0.925, 0.808, and 0.665, respectively. Furthermore, these 4 antioxidant peptides could block the Keap-Nrf2 interaction and promote the accumulation of Nrf2 by molecular docking analysis, and the interaction energy between peptide PGRW and Keap1 was higher than that between epigallocatechin gallate and Keap1 based on CHARMm forced field. Overall, this study facilitated the discovery of functional peptides in Baijiu and the understanding of aging mechanisms.
Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Simulação de Acoplamento Molecular , Proteína 1 Associada a ECH Semelhante a Kelch , Relação Quantitativa Estrutura-Atividade , PeptídeosRESUMO
Short-chain peptides (SCPs, 2-4 amino acids) offer potential health benefits. A customized workflow was designed to screen SCPs in goat milk during INFOGEST digestion in vitro and 186 SCPs were preliminarily identified. Based on a two-terminal position numbering method and genetic algorithm combined with a support vector machine, 22 SCPs with predicted IC50 values less than 10 µM were obtained using a quantitative structure-activity relationship (QSAR) model with satisfactory fitting and predictive capacity (R2, RMSE, Q2, and R2pre of 0.93, 0.27, 0.71, and 0.65, respectively). Four novel antihypertensive SCPs were confirmed by testing in vitro and molecular docking analysis, and their quantification results (0.06 to 1.53 mg L-1) suggested distinct metabolic fates. This study facilitated the discovery of unknown potential food-derived antihypertensive peptides and the understanding of bioaccessible peptides during digestion.
Assuntos
Anti-Hipertensivos , Leite , Animais , Anti-Hipertensivos/análise , Leite/química , Simulação de Acoplamento Molecular , Peptídeos/química , Digestão , Cabras/metabolismoRESUMO
The metabolic fates of potentially bioactive short-chain peptides (SCPs; amino acid numbers between 2 and 4) in gastrointestinal digestion have received little attention due to their low concentration and broad suppression during high resolution mass spectrometry (HRMS) analysis. A tailored workflow integrating mesoporous magnetic solid phase extraction and a novel ion transmission strategy (data-dependent acquisition combined with both an inclusion list and an exclusion list followed by a data-independent acquisition) was used to profile the composition of SCPs during in vitro simulated digestion (LOQ 0.02 to 0.1 µg L-1). A total of 47 dipeptides, 59 tripeptides, and 21 tetrapeptides were identified and quantified from 0.01 to 27.84 mg L-1 (RSD ≤ 9.1%) based on parallel reaction monitoring and an internal standard method. The structural properties of stable SCPs resistant to intestinal digestion were determined by analysis of variance (p < 0.05), with a Pro residue at the C-terminal or penultimate position, a slightly greater negative charge at pH 7.0, and fewer C-terminal aliphatic and polar amino acids. SCPs' metabolic fates varied during digestion, but the overall trend of content change for either total or individual SCP increased as the digestion proceeded, and they were further assessed by a database-driven bioactivity search, which matched a wide variety of bioactivities with the predominance of dipeptidyl peptidase (DPP) IV and angiotensin-converting enzyme (ACE) inhibitors. This study facilitated the understanding of bioaccessibility of the food-derived SCPs and provided essential guidelines for the properties of conserved structure in vivo.