Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Connect ; 13(8): 508-518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37128178

RESUMO

Background: Intracranial atherosclerotic stenosis (ICAS) is a key risk factor for vascular cognitive impairment. Cerebral blood flow (CBF) and the spatial coefficient of variation (sCoV) of CBF images (based on pseudocontinuous arterial spin labeling) are used to explore abnormal cerebral perfusion. We aimed to probe the mechanisms underlying cognitive impairment in patients with nondisabling anterior circulation macrovascular disease. Methods: This study included 47 patients with ICAS or occlusion and 40 controls. All participants underwent global and individual neuropsychology assessments and magnetic resonance imaging scan. The correlations between cognitive function and abnormal perfusion were explored. Results: The CBF in the ipsilateral middle cerebral artery (MCA) territory of the lesion side decreased significantly, while it increased on the contralateral side. CBF value had a significant correlation with the memory function in the right cerebral artery lesion group. The sCoV in both gray matter (GM) and the ipsilateral MCA territory of the lesion increased significantly. The sCoV value based on the GM territory or MCA territory was significantly correlated with global cognitive function, memory function, and executive function in patients with ICAS. Conclusions: The cognitive function of patients with severe ICAS or occlusion in anterior circulation was significantly impaired. sCoV could be a better indicator of cognitive impairment than CBF. Interventions to relieve vascular stenosis or occlusion and delay cognitive impairment or improve cognitive function should be actively considered.

2.
Brain Sci ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36421852

RESUMO

White matter hyperintensities (WMHs) are commonly observed in older adults and are associated with cognitive impairment. Although previous studies have found abnormal functional connectivities in patients with WMHs based on static functional magnetic resonance imaging (fMRI), the topological properties in the context of brain dynamics remain relatively unexplored. Herein, we explored disrupted dynamic topological properties of functional network connectivity in patients with WMHs and its relationship with cognitive impairment. We included 36 healthy controls (HC) and 104 patients with mild WMHs (n = 39), moderate WMHs (n = 37), and severe (n = 28) WMHs. The fMRI data of all participants were analyzed using Anatomical Automatic Labeling (AAL) and a sliding-window approach to generate dynamic functional connectivity matrics. Then, graph theory methods were applied to calculate the topological properties. Comprehensive neuropsychological scales were used to assess cognitive functions. Relationships between cognitive functions and abnormal dynamic topological properties were evaluated by Pearson's correlation. We found that the patients with WMHs had higher temporal variability in regional properties, including betweenness centrality, nodal efficiencies, and nodal clustering coefficient. Furthermore, we found that the degree of centrality was related to executive function and memory, and the local coefficient correlated to executive function. Our results indicate that patients with WMHs have higher temporal variabilities in regional properties and are associated with executive and memory function.

3.
Front Aging Neurosci ; 13: 670463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248601

RESUMO

OBJECTIVE: White matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is frequently presumed to be secondary to cerebral small vessel disease (CSVD) and associated with cognitive decline. The cerebellum plays a key role in cognition and has dense connections with other brain regions. Thus, the aim of this study was to investigate if cerebellar abnormalities could occur in CSVD patients with WMHs and the possible association with cognitive performances. METHODS: A total of 104 right-handed patients with WMHs were divided into the mild WMHs group (n = 39), moderate WMHs group (n = 37), and severe WMHs group (n = 28) according to the Fazekas scale, and 36 healthy controls were matched for sex ratio, age, education years, and acquired resting-state functional MRI. Analysis of voxel-based morphometry of gray matter volume (GMV) and seed-to-whole-brain functional connectivity (FC) was performed from the perspective of the cerebellum, and their correlations with neuropsychological variables were explored. RESULTS: The analysis revealed a lower GMV in the bilateral cerebellum lobule VI and decreased FC between the left- and right-sided cerebellar lobule VI with the left anterior cingulate gyri in CSVD patients with WMHs. Both changes in structure and function were correlated with cognitive impairment in patients with WMHs. CONCLUSION: Our study revealed damaged GMV and FC in the cerebellum associated with cognitive impairment. This indicates that the cerebellum may play a key role in the modulation of cognitive function in CSVD patients with WMHs.

4.
Front Psychiatry ; 12: 684553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326785

RESUMO

Background: White matter hyperintensities (WMHs) are a common occurrence with aging and are associated with cognitive impairment. However, the neurobiological mechanisms of WMHs remain poorly understood. Functional magnetic resonance imaging (fMRI) is a prominent tool that helps in non-invasive examinations and is increasingly used to diagnose neuropsychiatric diseases. Degree centrality (DC) is a common and reliable index in fMRI, which counts the number of direct connections for a given voxel in a network and reflects the functional connectivity within brain networks. We explored the underlying mechanism of cognitive impairment in WMHs from the perspective of DC. Methods: A total of 104 patients with WMHs and 37 matched healthy controls (HCs) were enrolled in the current study. All participants underwent individual and overall cognitive function tests and resting-state fMRI (rs-fMRI). WMHs were divided into three groups (39 mild WMHs, 37 moderate WMHs, and 28 severe WMHs) according to their Fazekas scores, and the abnormal DC values in the WMHs and HCs groups were analyzed. Results: There was a significant difference in the right inferior frontal orbital gyrus and left superior parietal gyrus between the WMHs and HCs groups. The functional connectivity between the right inferior frontal orbital gyrus and left inferior temporal gyrus, left superior parietal gyrus, and left parietal inferior gyrus was also different in the WMHs group. Conclusion: The change in DC value may be one of the underlying mechanisms of cognitive impairment in individuals with WMHs, which provides us with a new approach to delaying cognitive impairment in WMHs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa