Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Mater ; 23(5): 604-611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491148

RESUMO

The conventional fabrication of bulk van der Waals (vdW) materials requires a temperature above 1,000 °C to sinter from the corresponding particulates. Here we report the near-room-temperature densification (for example, ∼45 °C for 10 min) of two-dimensional nanosheets to form strong bulk materials with a porosity of <0.1%, which are mechanically stronger than the conventionally made ones. The mechanistic study shows that the water-mediated activation of van der Waals interactions accounts for the strong and dense bulk materials. Initially, water adsorbed on two-dimensional nanosheets lubricates and promotes alignment. The subsequent extrusion closes the gaps between the aligned nanosheets and densifies them into strong bulk materials. Water extrusion also generates stresses that increase with moulding temperature, and too high a temperature causes intersheet misalignment; therefore, a near-room-temperature moulding process is favoured. This technique provides an energy-efficient alternative to design a wide range of dense bulk van der Waals materials with tailored compositions and properties.

2.
Proc Natl Acad Sci U S A ; 119(49): e2214414119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459654

RESUMO

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.


Assuntos
Modelos Estatísticos , Software , Cromatina , Tecnologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38910165

RESUMO

PURPOSE: Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS: We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS: The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION: The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785590

RESUMO

Compelling evidence indicates that radiotherapy (RT) has a systemic inhibitory effect on nonirradiated lesions (abscopal effect) in addition to the ablation of irradiated tumors. However, this effect occurs only in rare circumstances in clinical practice, and mechanisms underlying the abscopal effect of RT are neither fully understood nor therapeutically utilized. Here we identified that intercellular adhesion molecule-1 (ICAM-1), an inducible glycoprotein of the immunoglobulin superfamily, is up-regulated in nonirradiated tumors responsive to RT. ICAM-1 expression in preclinical animal models can be noninvasively detected by optical imaging and positron emission tomography (PET) using near-infrared fluorescence dye- and 64Cu-labeled imaging probes that we synthesized, respectively. Importantly, the expression levels of ICAM-1 determined by quantitative PET imaging showed a strong negative linear correlation with the growth of nonirradiated tumors. Moreover, genetic or pharmacologic up-regulation of ICAM-1 expression by either an intratumoral injection of engineered recombinant adenovirus or systemic administration of a Toll-like receptor 7 agonist-capsulated nanodrug could induce markedly increased abscopal responses to local RT in animal models. Mechanistic investigation revealed that ICAM-1 expression can enhance both the activation and tumor infiltration of CD8+ T cells to improve the responses of the nonirradiated tumors to RT. Together, our findings suggest that noninvasive PET imaging of ICAM-1 expression could be a powerful means to predict the responses of nonirradiated tumors to RT, which could facilitate the exploration of new combination RT strategies for effective ablation of primary and disseminated lesions.


Assuntos
Antineoplásicos/administração & dosagem , Imiquimode/administração & dosagem , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Experimentais/radioterapia , Adenoviridae , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Molécula 1 de Adesão Intercelular/administração & dosagem , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos BALB C , Nanopartículas , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Tomografia por Emissão de Pósitrons
5.
Small ; 19(40): e2302920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267934

RESUMO

Integrating a graphene transparent electrode (TE) matrix with driving circuits is essential for the practical use of graphene in optoelectronics such as active-matrix organic light-emitting diode (OLED) display, however it is disabled by the transport of carriers between graphene pixels after deposition of a semiconductor functional layer caused by the atomic thickness of graphene. Here, the carrier transport regulation of a graphene TE matrix by using an insulating polyethyleneimine (PEIE) layer is reported. The PEIE forms an ultrathin uniform film (≤10 nm) to fill the gap of the graphene matrix, blocking horizontal electron transport between graphene pixels. Meanwhile, it can reduce the work function of graphene, improving the vertical electron injection through electron tunneling. This enables the fabrication of inverted OLED pixels with record high current and power efficiencies of 90.7 cd A-1 and 89.1 lm W-1 , respectively. By integrating these inverted OLED pixels with a carbon nanotube-based thin-film transistor (CNT-TFT)-driven circuit, an inch-size flexible active-matrix OLED display is demonstrated, in which all OLED pixels are independently controlled by CNT-TFTs. This research paves a way for the application of graphene-like atomically thin TE pixels in flexible optoelectronics such as displays, smart wearables, and free-form surface lighting.

6.
Proc Natl Acad Sci U S A ; 117(42): 25991-25998, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020292

RESUMO

Graphene has emerged as an attractive candidate for flexible transparent electrode (FTE) for a new generation of flexible optoelectronics. Despite tremendous potential and broad earlier interest, the promise of graphene FTE has been plagued by the intrinsic trade-off between electrical conductance and transparency with a figure of merit (σDC/σOp) considerably lower than that of the state-of-the-art ITO electrodes (σDC/σOp <123 for graphene vs. ∼240 for ITO). Here we report a synergistic electrical/optical modulation strategy to simultaneously boost the conductance and transparency. We show that a tetrakis(pentafluorophenyl)boric acid (HTB) coating can function as highly effective hole doping layer to increase the conductance of monolayer graphene by sevenfold and at the same time as an anti-reflective layer to boost the visible transmittance to 98.8%. Such simultaneous improvement in conductance and transparency breaks previous limit in graphene FTEs and yields an unprecedented figure of merit (σDC/σOp ∼323) that rivals the best commercial ITO electrode. Using the tailored monolayer graphene as the flexible anode, we further demonstrate high-performance green organic light-emitting diodes (OLEDs) with the maximum current, power and external quantum efficiencies (111.4 cd A-1, 124.9 lm W-1 and 29.7%) outperforming all comparable flexible OLEDs and surpassing that with standard rigid ITO by 43%. This study defines a straightforward pathway to tailor optoelectronic properties of monolayer graphene and to fully capture their potential as a generational FTE for flexible optoelectronics.

7.
Small ; 18(24): e2201840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561072

RESUMO

Germanium (Ge)-based devices are recognized as one of the most promising next-generation technologies for extending Moore's law. However, one of the critical issues is Fermi-level pinning (FLP) at the metal/n-Ge interface, and the resulting large contact resistance seriously degrades their performance. The insertion of a thin layer is one main technique for FLP modulation; however, the contact resistance is still limited by the remaining barrier height and the resistance induced by the insertion layer. In addition, the proposed depinning mechanisms are also controversial. Here, the authors report a wafer-scale carbon nanotube (CNT) insertion method to alleviate FLP. The inserted conductive film reduces the effective Schottky barrier height without inducing a large resistance, leading to ohmic contact and the smallest contact resistance between a metal and a lightly doped n-Ge. These devices also indicate that the metal-induced gap states mechanism is responsible for the pinning. Based on the proposed technology, a wafer-scale planar diode array is fabricated at room temperature without using the traditional ion-implantation and annealing technology, achieving an on-to-off current ratio of 4.59 × 104 . This work provides a new way of FLP modulation that helps to improve device performance with new materials.

8.
Conserv Biol ; 36(4): e13887, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34989447

RESUMO

Previous assessments of the effectiveness of protected areas (PAs) focused primarily on changes in human pressure over time and did not consider the different human-pressure baselines of PAs, thereby potentially over- or underestimating PA effectiveness. We developed a framework that considers both human-pressure baseline and change in human pressure over time and assessed the effectiveness of 338 PAs in China from 2010 to 2020. The initial state of human pressure on PAs was taken as the baseline, and changes in human pressure index (HPI) were further analyzed under different baselines. We used the random forest models to identify the management measures that most improved effectiveness in resisting human pressure for the PAs with different baselines. Finally, the relationships between the changes in the HPI and the changes in natural ecosystems in PAs were analyzed with different baselines. Of PAs with low HPI baselines, medium HPI baselines, and high HPI baselines, 76.92% (n=150), 11.11% (n=12), and 22.86% (n=8) , respectively, showed positive effects in resisting human pressure. Overall, ignoring human-pressure baselines somewhat underestimated the positive effects of PAs, especially for those with low initial human pressure. For PAs with different initial human pressures, different management measures should be taken to improve effectiveness and reduce threats to natural ecosystems. We believe our framework is useful for assessing the effectiveness of PAs globally, and we recommend it be included in the Convention on Biological Diversity Post-2020 Strategy.


Las evaluaciones previas de la efectividad de las áreas protegidas (AP) se han enfocado principalmente en los cambios de las presiones humanas con el tiempo y no han considerado las diferentes líneas base de las presiones humanas en las AP, por lo que potencialmente han sobrestimado o subestimado su efectividad. Desarrollamos un marco de trabajo que considera las líneas base de presión humana y los cambios de las presiones humanas con el tiempo y evaluamos a la efectividad de 338 AP en China entre 2010 y 2020. Consideramos el estado inicial de la presión humana en las AP como la línea base y analizamos los cambios en el índice de presión humana (IPH) bajo diferentes líneas base. Utilizamos modelos de bosque aleatorio para identificar las medidas de gestión que más aumentaron la efectividad de la resistencia a las presiones humanas en las AP con líneas base diferentes. Finalmente, analizamos con diferentes líneas base las relaciones entre los cambios en el IPH y los cambios en los ecosistemas naturales de las AP. De las AP con líneas base de IPH bajas, medianas y altas, 76.92% (n=150), 11.11% (n=12) y 22.86% (n=8), respectivamente, mostraron efectos positivos de resistencia a las presiones humanas. En general, si ignoramos las líneas base de las presiones humanas, se subestiman los efectos positivos de las AP de una u otra manera, especialmente aquellas con poca presión humana al inicio. En el caso de las AP que al inicio tienen diferentes presiones humanas, se deben tomar diferentes medidas de gestión para mejorar la efectividad y reducir las amenazas a los ecosistemas naturales. Creemos que nuestro marco de trabajo sirve para evaluar la efectividad mundial de las AP y recomendamos que se incluya en la Estrategia Post-2020 de la Convención sobre la Diversidad Biológica. Mejoría de la Efectividad de un Área Protegida al Considerar Diferentes Líneas Base de Presión Humana.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Humanos
9.
J Environ Manage ; 308: 114593, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121461

RESUMO

Protected areas (PAs) have been established worldwide to conserve biodiversity. However, the conservation effectiveness of different PA functional zones remains poorly understood. Here, we investigated National Nature Reserves (NNRs) in China to explore and quantify the conservation in their core, buffer, and experimental zones. We compared the area and proportion of forest loss for these functional zones during the period from 2001 to 2018. The results showed that the forest loss in NNRs showed a decreasing trend since 2011, indicating that NNRs reduced the forest loss. There was no significant difference of forest loss proportion (p = 0.42) between the core zones (0.60 ± 1.32%) and buffer zones (0.55 ± 0.88%), implying that their performance in forest conservation was similar. There was a significant difference between experimental and core zones as well as between experimental and buffer zones both in forest loss area and proportion (p ˂ 0.05). We confirmed that the proportion of functional zones significantly affects the conservation effectiveness, i.e., an improper proportion of core zones or buffer zones may lead to forest loss. Therefore, we suggest an optimal proportion of core and buffer zones at 30%-50% and 10%-40%, respectively. Overall, the effectiveness of functional zones in forest nature reserves was assessed on a national scale. The results of this study support the recent adjustment in the PA functional zoning system in China.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Conservação dos Recursos Naturais/métodos , Florestas
10.
J Environ Manage ; 317: 115455, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751259

RESUMO

City clusters play an important role in air pollutant and greenhouse gas (GHG) emissions reduction in China, primarily due to their high fossil energy consumption levels. The "2 + 26" Cities, i.e., Beijing, Tianjin and 26 other perfectures in northern China, has experienced serious air pollution in recent years. We employ the Greenhouse Gas and Air Pollution Interactions and Synergies model adapted to the "2 + 26" Cities (GAINS-JJJ) to evaluate the impacts of structural adjustments in four major sectors, industry, energy, transport and land use, under the Three-Year Action Plan for Blue Skies (Three-Year Action Plan) on the emissions of both the major air pollutants and CO2 in the "2 + 26" Cities. The results indicate that the Three-Year Action Plan applied in the "2 + 26" Cities reduces the total emissions of primary fine particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), SO2, NOx, NH3 and CO2 by 17%, 25%, 21%, 3% and 1%, respectively, from 2017 to 2020. The emission reduction potentials vary widely across the 28 prefectures, which may be attributed to the differences in energy structure, industrial composition, and policy enforcement rate. Among the four sectors, adjustment of industrial structure attains the highest co-benefits of CO2 reduction and air pollution control due to its high CO2 reduction potential, while structural adjustments in energy and transport attain much lower co-benefits, despite their relatively high air pollutant emissions reductions, primarily resulting from an increase in the coal-electric load and associated carbon emissions caused by electric reform policies..


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Dióxido de Carbono/análise , China , Cidades , Mudança Climática , Monitoramento Ambiental/métodos , Gases de Efeito Estufa/análise , Material Particulado/análise
11.
Macromol Rapid Commun ; 42(18): e2100019, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33715233

RESUMO

In human body, alveoli are the primary sites for gas exchange which are formed by the dilation and protrusion of bronchioles at the end of the lung, and the rapid gas-exchanging process in the alveoli ensures normal life activities. Based on the unique structures and functions of alveoli, it is necessary to study the regulation mechanism of its formation, respiration, and apoptosis. Herein, a class of reversible addition-fragmentation chain transfer (RAFT)-derived amphiphilic triblock copolymers, PEO-b-P(DEAEMA-co-FMA)-b-PS is designed and synthesized. Due to the amphiphilic and gas-responsive segments, these triblock copolymers can self-assemble in aqueous solution and undergo the morphological transition from nanotubes to vesicles under gas stimulation; meanwhile, in the cycles of CO2 /O2 stimulation, these vesicles can further realize the volume expansion and contraction, eventually rupture. The gas-driven morphological transformations of these aggregates successfully imitate the formation, respiration, and apoptosis of alveoli, and provide an essential basis for revealing the life phenomena.


Assuntos
Micelas , Polímeros , Humanos , Pulmão , Água
12.
Int J Biometeorol ; 64(11): 1865-1876, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734424

RESUMO

Plant phenological events are sensitive indicators of climate change, and their change could markedly affect the structure and function of ecosystems. Previous studies have revealed the spatiotemporal variations in the phenological events of woody plants. However, limited studies have focused on the phenophases of herbaceous plants. In this study, by using a meta-analysis method, we extracted information about the phenological changes in herbaceous plants in China's grasslands from existing studies (including the period, station, species, phenophases, phenological trends, and climatic determinants) and analyzed the patterns manifested in the dataset. The results showed that the spring phenophases (e.g., first leaf date and first flowering date) of the herbaceous plants mainly advanced over the past 30 years, but a large difference existed across grassland types. The spring phenophases of forages (species from the Cyperaceae, Gramineae, and Leguminosae families) became earlier in the desert steppe and alpine steppe but showed no apparent trends in the alpine meadow and even became later in the meadow steppe and typical steppe. In most cases, the increase in spring temperatures and precipitation promoted the greening up of herbaceous plants, while sunshine duration was positively correlated with the green-up date of herbaceous plants. For the autumn phenophases, the proportions of the earlier and later trends were very close, but the trends varied among the grassland types. The leaf coloring dates of the forages were delayed in the meadow steppe and alpine steppe but showed no distinct pattern in the typical steppe or alpine meadow and even became earlier in the desert steppe. In most cases, the increase in growing season temperature led to an earlier leaf coloring date of the herbaceous plants, but the increase in the preseason precipitation delayed the leaf coloring date. Our results suggested that the phenophases of herbaceous plants have complicated responses to multiple environmental factors, which makes predicting future phenological changes difficult.


Assuntos
Mudança Climática , Pradaria , China , Ecossistema , Plantas , Estações do Ano , Temperatura
13.
J Environ Sci (China) ; 95: 183-189, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653178

RESUMO

Coking industry is an important volatile organic compounds (VOCs) emission source in China, however, detailed information on VOCs emissions is lacking. Therefore, we selected a typical mechanized coking plant and collected air samples according to the Emission Standard of Pollutants for Coking Chemical Industry (GB16171-2012). Using gas chromatography-mass spectrometry method, we analyzed the VOCs in the air samples, and applied maximum increment reactivity (MIR) rule to estimate ozone formation potential (OFP) of the VOCs emitted from the coke production. More than 90 VOCs species were detected from the coking plant, including alkanes, alkenes, alkynes, aromatic hydrocarbons, halogenated hydrocarbons and oxygenated VOCs. The concentrations of VOCs (ρ(VOCs)) generated at different stages of the coking process are significantly different. ρ(VOCs) from coke oven chimney had the highest concentration (87.1 mg/m3), followed by coke pushing (4.0 mg/m3), coal charging (3.3 mg/m3) and coke oven tops (1.1 mg/m3). VOCs species emitted from the coke production processes were dominated by alkanes and alkenes, but the composition proportions were different at the different stages. Alkenes were the most abundant emission species in flue gases of the coke oven chimney accounting for up to 66% of the total VOCs, while the VOCs emissions from coke pushing and coal charging were dominated by alkanes (36% and 42%, respectively), and the alkanes and alkenes emitted from coke oven top were similar (31% and 29%, respectively). Based on above results, reduction of VOCs emissions from coke oven chimney flue gases is suggested to be an effective measure, especially for alkenes.


Assuntos
Poluentes Atmosféricos/análise , Coque , Ozônio/análise , Compostos Orgânicos Voláteis/análise , China , Monitoramento Ambiental
14.
Sci Total Environ ; 914: 170033, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220000

RESUMO

Organic aerosol (OA) serves as a crucial component of fine particulate matter. However, the response of OA to changes in anthropogenic emissions remains unclear due to its complexity. The XXIV Olympic Winter Games (OWG) provided real atmospheric experimental conditions on studying the response of OA to substantial emission reductions in winter. Here, we explored the sources and variations of OA based on the observation of aerosol mass spectrometer (AMS) combined with positive matrix factorization (PMF) analysis in urban Beijing during the 2022 Olympic Winter Games. The influences of meteorological conditions on OA concentrations were corrected by CO and verified by deweathered model. The CO-normalized primary OA (POA) concentrations from traffic, cooking, coal and biomass burning during the OWG decreased by 39.8 %, 23.2 % and 65.0 %, respectively. Measures controlling coal and biomass burning were most effective in reducing POA during the OWG. For the CO-normalized concentration of secondary OA (SOA), aqueous-phase related oxygenated OA decreased by 51.8 % due to the lower relative humidity and emission reduction in precursors, while the less oxidized­oxygenated OA even slightly increased as the enhanced atmospheric oxidation processes may partially offset the efficacy of emission control. Therefore, more targeted reduction of organic precursors shall be enhanced to lower atmospheric oxidation capacity and mitigate SOA pollution.

15.
J Nucl Med ; 65(5): 728-734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514084

RESUMO

Immune checkpoint blockade (ICB) has achieved groundbreaking results in clinical cancer therapy; however, only a subset of patients experience durable benefits. The aim of this study was to explore strategies for predicting tumor responses to optimize the intervention approach using ICB therapy. Methods: We used a bilateral mouse model for proteomics analysis to identify new imaging biomarkers for tumor responses to ICB therapy. A PET radiotracer was synthesized by radiolabeling the identified biomarker-targeting antibody with 124I. The radiotracer was then tested for PET prediction of tumor responses to ICB therapy. Results: We identified galectin-1 (Gal-1), a member of the carbohydrate-binding lectin family, as a potential negative biomarker for ICB efficacy. We established that Gal-1 inhibition promotes a sensitive immune phenotype within the tumor microenvironment (TME) for ICB therapy. To assess the pre-ICB treatment status of the TME, a Gal-1-targeted PET radiotracer, 124I-αGal-1, was developed. PET imaging with 124I-αGal-1 showed the pretreatment immunosuppressive status of the TME before the initiation of therapy, thus enabling the prediction of ICB resistance in advance. Moreover, the use of hydrogel scaffolds loaded with a Gal-1 inhibitor, thiodigalactoside, demonstrated that a single dose of thiodigalactoside-hydrogel significantly potentiated ICB and adoptive cell transfer immunotherapies by remodeling the immunosuppressive TME. Conclusion: Our study underscores the potential of Gal-1-targeted PET imaging as a valuable strategy for early-stage monitoring of tumor responses to ICB therapy. Additionally, Gal-1 inhibition effectively counteracts the immunosuppressive TME, resulting in enhanced immunotherapy efficacy.


Assuntos
Galectina 1 , Imunoterapia , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Galectina 1/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino , Resultado do Tratamento , Radioisótopos do Iodo , Humanos
16.
ArXiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37744467

RESUMO

Tens of thousands of simultaneous hypothesis tests are routinely performed in genomic studies to identify differentially expressed genes. However, due to unmeasured confounders, many standard statistical approaches may be substantially biased. This paper investigates the large-scale hypothesis testing problem for multivariate generalized linear models in the presence of confounding effects. Under arbitrary confounding mechanisms, we propose a unified statistical estimation and inference framework that harnesses orthogonal structures and integrates linear projections into three key stages. It begins by disentangling marginal and uncorrelated confounding effects to recover the latent coefficients. Subsequently, latent factors and primary effects are jointly estimated through lasso-type optimization. Finally, we incorporate projected and weighted bias-correction steps for hypothesis testing. Theoretically, we establish the identification conditions of various effects and non-asymptotic error bounds. We show effective Type-I error control of asymptotic $z$-tests as sample and response sizes approach infinity. Numerical experiments demonstrate that the proposed method controls the false discovery rate by the Benjamini-Hochberg procedure and is more powerful than alternative methods. By comparing single-cell RNA-seq counts from two groups of samples, we demonstrate the suitability of adjusting confounding effects when significant covariates are absent from the model.

17.
Small Methods ; 6(2): e2101030, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35174984

RESUMO

Large-area fabrication and stacking of various nanometer-thick functional layers from solutions is essentially important for the construction of flexible thin-film optoelectronic devices, but very challenging. The existing fabrication methods suffer from either non-uniformity caused by the coffee-ring effect or serious solution waste (excess of 90% for spin coating), and are hard to scale up and create stacks. Here, it is shown that centrifugal casting is a universal, scalable, and efficient method to fabricate uniform nanometer-thick films and their stacks of various materials. The coffee-ring effect is effectively suppressed, the solution utilization ratio is higher than ≈61%, and the films/stacks show a smooth surface/high-quality interface. Using this method, flexible quantum dot light-emitting diode displays with uniform luminance in a large lighting area of ≈115 cm2 that have not been achieved even on rigid substrates by the existing methods, are realized. This efficient and low-cost solution processing method paves a way for large-area fabrication of various flexible thin-film optoelectronic devices.

18.
Nat Commun ; 13(1): 4987, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008446

RESUMO

Ambient solution-processed conductive materials with a sufficient low work function are essential to facilitate electron injection in electronic and optoelectronic devices but are challenging. Here, we design an electrically conducting and ambient-stable polymer electrolyte with an ultralow work function down to 2.2 eV, which arises from heavy n-doping of dissolved salts to polymer matrix. Such materials can be solution processed into uniform and smooth films on various conductors including graphene, conductive metal oxides, conducting polymers and metals to substantially improve their electron injection, enabling high-performance blue light-emitting diodes and transparent light-emitting diodes. This work provides a universal strategy to design a wide range of stable charge injection materials with tunable work function. As an example, we also synthesize a high-work-function polymer electrolyte material for high-performance solar cells.

19.
Med Phys ; 48(7): 3679-3690, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33825207

RESUMO

PURPOSE: The dual-energy computed tomography (DECT) technique is an emerging imaging tool that can better characterize material features and has the potential to be a noninvasive means of predicting lymph node metastasis. The purpose of this study was to establish a DECT-specified quantitative approach based on a neural network to characterize the sentinel lymph node (SLN). METHODS: With IRB approval, we retrospectively collected a total of 229 patients (100/229 metastasis) with biopsy proven breast cancer in this study. The chest and axillary spectral CT examinations were performed prior to the axillary lymph node (ALN) surgery. A decoupling convolution network with 11 ROIs from sequential keV (40 to 140 keV with 10 keV increment) was proposed to explicitly extract the spectral and spatial features in a DECT to predict the lymph node status. Focal loss was introduced as the loss function. The metric of the slope of the spectral Hounsfield unit curve measured at the venous phase was used as the baseline approach in comparison to our approach. In additional, a logistic model with radiomic features was also compared to our approach. The area under ROC curve (AUC) was used as the figure of merit to evaluate the classification performance. RESULTS: By introducing spectral convolution and focal loss, AUC on test set could be improved by 0.15 and 0.01 separately. Compared to the slope of the spectral curve with the average AUC of 0.611 and radiomic model with AUC of 0.825, the proposed approach demonstrates a considerably better performance, with test set AUC value of 0.837, by using decoupling spectral and spatial convolution together with focal loss function. CONCLUSIONS: We presented a new decoupling neural network based quantification method for DECT analysis, which might have potential as a noninvasive tool to predict metastasis lymph node status for breast cancer in clinical practice.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Metástase Linfática , Estudos Retrospectivos , Linfonodo Sentinela/diagnóstico por imagem
20.
Sci Total Environ ; 764: 142895, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33131857

RESUMO

Protected areas (PAs) are considered essential for biodiversity conservation, and concerns about the effectiveness of PAs in terms of reducing deforestation are growing. However, few studies have identified the management measures that best reduce deforestation within existing PAs. Here, we carried out 10-year (from 2007 to 2016) field surveys and obtained a database of 10 management measures of 227 PAs mainly protecting forest ecosystems in China. We examined the contributions of the above 10 management measures in relation to the effectiveness of 227 PAs in reducing deforestation. Our results indicated that 52.68% of PAs had positive effects related to reducing deforestation (E > 0, P < 0.05), while 16.52% of PAs had negative effects (E < 0, P < 0.05). The most important management measures affecting the effectiveness of PAs in reducing deforestation were funding, infrastructure, and scientific research and monitoring. Thus, our study provides evidence indicating that improved funding and scientific research benefit the effectiveness of PAs. The findings have global implications for guiding PAs to take explicit measures to improve the outcomes of biodiversity conservation.


Assuntos
Ecossistema , Agricultura Florestal , Biodiversidade , China , Conservação dos Recursos Naturais , Florestas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa