Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101044, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358562

RESUMO

Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice.


Assuntos
Encéfalo/metabolismo , Calmodulina/metabolismo , Medo , Aprendizagem , Coativador 3 de Receptor Nuclear/metabolismo , Acetilação , Animais , Cálcio/metabolismo , Calmodulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Coativador 3 de Receptor Nuclear/genética
2.
Neurosci Bull ; 37(12): 1645-1657, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34228315

RESUMO

Steroid hormones play important roles in brain development and function. The signaling of steroid hormones depends on the interaction between steroid receptors and their coactivators. Although the function of steroid receptor coactivators has been extensively studied in other tissues, their functions in the central nervous system are less well investigated. In this study, we addressed the function of steroid receptor coactivator 3 (SRC3) - a member of the p160 SRC protein family that is expressed predominantly in the hippocampus. While hippocampal development was not altered in Src3+/- mice, hippocampus-dependent functions such as short-term memory and spatial memory were impaired. We further demonstrated that the deficient learning and memory in Src3+/- mice was strongly associated with the impairment of long-term potentiation (LTP) at Schaffer Collateral-CA1 synapses. Mechanistic studies indicated that Src3+/- mutation altered the composition of N-methyl-D-aspartate receptor subunits in the postsynaptic densities of hippocampal neurons. Finally, we showed that SRC3 regulated synaptic plasticity and learning mainly dependent on its lysine acetyltransferase activity. Taken together, these results reveal previously unknown functions of SRC3 in the hippocampus and thus may provide insight into how steroid hormones regulate brain function.


Assuntos
Hipocampo , Coativador 3 de Receptor Nuclear , Animais , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal , Coativador 3 de Receptor Nuclear/genética , Sinapses
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa