Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 21(5): 2165-2173, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33591207

RESUMO

Monolayer transition metal dichalcogenides bear great potential for photodetection and light harvesting due to high absorption coefficients. However, these applications require dissociation of strongly bound photogenerated excitons. The dissociation can be achieved by vertically stacking different monolayers to realize band alignment that favors interlayer charge transfer. In such heterostructures, the reported recombination times vary strongly, and the charge separation and recombination mechanisms remain elusive. We use two color pump-probe microscopy to demonstrate that the charge separation in a MoSe2/WSe2 heterostructure is ultrafast (∼200 fs) and virtually temperature independent, whereas the recombination accelerates strongly with temperature. Ab initio quantum dynamics simulations rationalize the experiments, indicating that the charge separation is temperature-independent because it is barrierless, involves dense acceptor states, and is promoted by higher-frequency out-of-plane vibrations. The strong temperature dependence of the recombination, on the other hand, arises from a transient indirect-to-direct bandgap modulation by low-frequency shear and layer breathing motions.

2.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432111

RESUMO

Reflectance anisotropy spectroscopy (RAS) coupled to an electrochemical cell represents a powerful tool to correlate changes in the surface optical anisotropy to changes in the electrochemical currents related to electrochemical reactions. The high sensitivity of RAS in the range of the absorption bands of organic systems, such as porphyrins, allows us to directly correlate the variations of the optical anisotropy signal to modifications in the solid-state aggregation of the porphyrin molecules. By combining in situ RAS to electrochemical techniques, we studied the case of vacuum-deposited porphyrin nanocrystals, which have been recently observed dissolving through electrochemical oxidation in diluted sulfuric acid. Specifically, we could identify the first stages of the morphological modifications of the nanocrystals, which we could attribute to the single-electron transfers involved in the oxidation reaction; in this sense, the simultaneous variation of the optical anisotropy with the electron transfer acts as a precursor of the dissolution process of porphyrin nanocrystals.


Assuntos
Nanopartículas , Porfirinas , Porfirinas/química , Anisotropia , Solubilidade , Técnicas Eletroquímicas
3.
Opt Lett ; 46(10): 2453-2456, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988608

RESUMO

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

4.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885914

RESUMO

Flexible and economic sensor devices are the focus of increasing interest for their potential and wide applications in medicine, food analysis, pollution, water quality, etc. In these areas, the possibility of using stable, reproducible, and pocket devices can simplify the acquisition of data. Among recent prototypes, sensors based on laser-induced graphene (LIGE) on Kapton represent a feasible choice. In particular, LIGE devices are also exploited as electrodes for sensing in liquids. Despite a characterization with electrochemical (EC) methods in the literature, a closer comparison with traditional graphite electrodes is still missing. In this study, we combine atomic force microscopy with an EC cell (EC-AFM) to study, in situ, electrode oxidation reactions when LIGE or other graphite samples are used as anodes inside an acid electrolyte. This investigation shows the quality and performance of the LIGE electrode with respect to other samples. Finally, an ex situ Raman spectroscopy analysis allows a detailed chemical analysis of the employed electrodes.

5.
J Chem Phys ; 152(5): 054706, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035469

RESUMO

Shaping the morphology of oxide nanolayers is of paramount importance in tailoring their physical and chemical properties. Here, the influence of a two dimensional graphene buffer layer on the growth of Fe oxide has been investigated by comparing the oxide deposition on a Ni(111) and a graphene/Ni(111) substrate. Scanning tunneling microscopy images acquired at a mesoscopic scale indicate that Fe oxide grows layer-by-layer on the bare Ni(111) surface, while the nucleation of three-dimensional clusters is induced by graphene. Atomically resolved images reveal that Fe oxide adopts an in-plane lattice constant similar to that of the FeO(111) surface when deposited on Ni(111) and graphene/Ni(111), indicating in both cases, a weak interaction between the overlayer and the substrate. Accordingly, it is suggested that the different growth mode is mainly driven by the graphene-induced lowering of the substrate surface free energy.

6.
J Chem Phys ; 153(21): 214703, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291906

RESUMO

The dispersion of the electronic states of epitaxial graphene (Gr) depends significantly on the strength of the bonding with the underlying substrate. We report on empty electron states in cobalt-intercalated Gr grown on Ir(111), studied by angle-resolved inverse photoemission spectroscopy and x-ray absorption spectroscopy, complemented with density functional theory calculations. The weakly bonded Gr on Ir preserves the peculiar spectroscopic features of the Gr band structure, and the empty spectral densities are almost unperturbed. Upon intercalation of a Co layer, the electronic response of the interface changes, with an intermixing of the Gr π* bands and Co d states, which breaks the symmetry of π/σ states, and a downshift of the upper part of the Gr Dirac cone. Similarly, the image potential of Ir(111) is unaltered by the Gr layer, while a downward shift is induced upon Co intercalation, as unveiled by the image state energy dispersion mapped in a large region of the surface Brillouin zone.

7.
Appl Opt ; 59(27): 8175-8181, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976398

RESUMO

The possibility of following electrochemical processes in situ and in real time using optical techniques is important in view of shining a light on the chemical processes at the surface. The interest grows if the optical apparatus is compact and can be employed in industrial quality-check protocols. Here, we show how graphite anion intercalation-an important chemical process to massively produce graphene flakes-can be monitored by a UV-vis spectrometer when the graphite works as an electrode immersed inside the electrochemical cell. Important information on the reversibility or quasi-reversibility of the reaction shows a clear visualization in optical color maps.

8.
Nano Lett ; 19(10): 7013-7020, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31461291

RESUMO

The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerprint in the polarization state of the THG emission from gold noncentrosymmetric nanoantennas, which directly reflects the asymmetric distribution of second-harmonic fields within the structure and does not depend on the model one employs to describe photon upconversion. We suggest that such cascaded processes may also appear for structures that exhibit only moderate SHG yields. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows us to gain further insight into the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room temperature.

9.
Langmuir ; 34(11): 3413-3419, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29485887

RESUMO

Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified.

10.
Chirality ; 30(7): 883-889, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782670

RESUMO

We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased.

11.
Nano Lett ; 17(12): 7440-7446, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29149565

RESUMO

Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the insertion of a two-dimensional magnetic oxide layer at the interface with the aim of both increasing the reproducibility of the interface preparation and offering a way for a further fine control over the electronic and magnetic properties. We have inserted a two-dimensional Cr4O5 layer at the C60/Fe(001) interface and have characterized the corresponding morphological, electronic, and magnetic properties. Scanning tunneling microscopy and electron diffraction show that the film grows well-ordered both in the monolayer and multilayer regimes. Electron spectroscopies confirm that hybridization of the electronic states occurs at the interface. Finally, magnetic dichroism in X-ray absorption shows an unprecedented spin-polarization of the hybridized fullerene states. The latter result is discussed also in light of an ab initio theoretical analysis.

13.
Nat Nanotechnol ; 19(3): 298-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052942

RESUMO

All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.

14.
Nano Lett ; 12(6): 2941-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22551099

RESUMO

Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging.


Assuntos
Ouro/química , Medições Luminescentes/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Teste de Materiais , Tamanho da Partícula , Fótons
15.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984119

RESUMO

An innovative and versatile set-up for in situ and real time measures in an electrochemical cell is described. An original coupling between micro-Raman spectroscopy and atomic force microscopy enables one to collect data on opaque electrodes. This system allows for the correlation of topographic images with chemical maps during the charge exchange occurring in oxidation/reduction processes. The proposed set-up plays a crucial role when reactions, both reversible and non-reversible, are studied step by step during electrochemical reactions and/or when local chemical analysis is required.

16.
J Am Chem Soc ; 134(13): 5832-5, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22413739

RESUMO

Two-photon fluorescence scanning confocal microscopy sensitive to circular dichroism with a diffraction-limited resolution well below 500 nm is demonstrated. With this method, the spatial variation of the circular dichroism of thermally annealed chiral polyfluorene thin films has been imaged. We observed circular dichroism associated with submicrometer-sized domains showing helicoidally twisted macromolecular organization. Domains with opposite chiroptical properties, corresponding to left- or right-handed molecular organization, coexist in the film. Our results are consistent with those obtained by one-photon imaging and illustrate the potential of two-photon imaging for use in studying helical macromolecular organization.

17.
Beilstein J Nanotechnol ; 13: 857-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105692

RESUMO

Fullerene (C60) has been deposited in ultrahigh vacuum on top of a zinc tetraphenylporphyrin (ZnTPP) monolayer self-assembled on a Fe(001)-p(1 × 1)O substrate. The nanoscale morphology and the electronic properties of the C60/ZnTPP/Fe(001)-p(1 × 1)O heterostructure have been investigated by scanning tunneling microscopy/spectroscopy and ultraviolet photoemission spectroscopy. C60 nucleates compact and well-ordered hexagonal domains on top of the ZnTPP buffer layer, suggesting a high surface diffusivity of C60 and a weak coupling between the overlayer and the substrate. Accordingly, work function measurements reveal a negligible charge transfer at the C60/ZnTPP interface. Finally, the difference between the energy of the lowest unoccupied molecular orbital (LUMO) and that of the highest occupied molecular orbital (HOMO) measured on C60 is about 3.75 eV, a value remarkably higher than those found in fullerene films stabilized directly on metal surfaces. Our results unveil a model system that could be useful in applications in which a quasi-freestanding monolayer of C60 interfaced with a metallic electrode is required.

18.
ACS Appl Nano Mater ; 4(12): 12993-13000, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34977478

RESUMO

Hybrid nanostructures in which organic molecules are interfaced with metal surfaces hold promise for the discovery of intriguing physical and chemical phenomena, as well as for the development of innovative devices. In this frame, it is crucial to understand the interplay between the structural details of the interface and the electronic properties of the system. Here, an experimental investigation of the C60/Ni(111) interface is performed by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low-energy electron diffraction (LEED). The deposition of C60 at room temperature, followed by high-temperature annealing, promotes the stabilization of two different phases. A hitherto unreported phase forming a (7 × 7) honeycomb overlayer coexists with the well-known (4 × 4) reconstruction. Highly resolved STM images disclose the adsorption geometry of the molecules for both phases. STS reveals that the electronic properties of C60/Ni(111) are strongly influenced by the morphology of the interface, suggesting the possibility of tuning the electronic properties of the organic/inorganic heterostructures by adjusting the structural coupling with the substrate. This achievement can be important for hybrid magnetic interfaces, where the harmonization between the molecular and the magnetic orders can enhance the development of hybrid magnetic states.

19.
Micromachines (Basel) ; 12(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668500

RESUMO

In this paper we focus on the structural, electronic, and magnetic properties of Ni tetra-phenyl-porphyrins (NiTPP) grown on top of Fe(001)-p(1 × 1)O. Ordered thin films of metal TPP molecules are potentially interesting for organic electronic and spintronic applications, especially when they are coupled to a ferromagnetic substrate. Unfortunately, porphyrin layers deposited on top of ferromagnetic substrates do not generally show long-range order. In this work, we provide evidence of an ordered disposition of the organic film above the iron surface and we prove that the thin layer of iron oxide decouples the molecules from the substrate, thus preserving the molecular electronic features, especially the HOMO-LUMO gap, even when just a few organic layers are deposited. The effect of the exposure to molecular oxygen is also investigated and an increased robustness against oxidation with respect to the bare substrate is detected. Finally, we present our results for the magnetic analysis performed by spin resolved spectroscopy, finding a null magnetic coupling between the molecules and the substrate.

20.
J Phys Condens Matter ; 33(11): 115002, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33326942

RESUMO

Carbon forms (graphite, pyrolytic graphite, highly oriented pyrolytic graphite (HOPG), glassy carbon, carbon foam, graphene, buckypaper, etc) are a wide class of materials largely used in technology and energy storage. The huge request of carbon compounds with reliable and tunable physical and chemical properties is tackled by contriving new production protocols and/or compound functionalizations. To achieve these goals, new samples must be tested in a trial-and-error strategy with techniques that provide information in terms of both specimen quality and properties. In this work, we prove that electrochemical scanning probe techniques allow testing the performances of carbon compounds when are used as an electrode inside an electrochemical cell. Comparing the results with a reference sample (namely, HOPG) gives an insight on defects in the specimen structure, performances, and possible applications of the new samples. In this study, we concentrate on traditional carbon forms already employed in many fields versus new recently-developed specimens, in view of possible applications to the field of energy storage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa